Switch to keybase go-crypto (for some elliptic curve key) + test (#1925)
* Switch to keybase go-crypto (for some elliptic curve key) + test
* Use assert.NoError
and add a little more context to failing test description
* Use assert.(No)Error everywhere 🌈
and assert.Error in place of .Nil/.NotNil
This commit is contained in:
parent
5e92b82ac6
commit
274149dd14
56 changed files with 10621 additions and 925 deletions
|
@ -19,9 +19,9 @@ import (
|
|||
"code.gitea.io/gitea/modules/log"
|
||||
|
||||
"github.com/go-xorm/xorm"
|
||||
"golang.org/x/crypto/openpgp"
|
||||
"golang.org/x/crypto/openpgp/armor"
|
||||
"golang.org/x/crypto/openpgp/packet"
|
||||
"github.com/keybase/go-crypto/openpgp"
|
||||
"github.com/keybase/go-crypto/openpgp/armor"
|
||||
"github.com/keybase/go-crypto/openpgp/packet"
|
||||
)
|
||||
|
||||
// GPGKey represents a GPG key.
|
||||
|
|
|
@ -43,7 +43,28 @@ MkM/fdpyc2hY7Dl/+qFmN5MG5yGmMpQcX+RNNR222ibNC1D3wg==
|
|||
-----END PGP PUBLIC KEY BLOCK-----`
|
||||
|
||||
key, err := checkArmoredGPGKeyString(testGPGArmor)
|
||||
assert.Nil(t, err, "Could not parse a valid GPG armored key", key)
|
||||
assert.NoError(t, err, "Could not parse a valid GPG public armored rsa key", key)
|
||||
//TODO verify value of key
|
||||
}
|
||||
|
||||
func TestCheckArmoredbrainpoolP256r1GPGKeyString(t *testing.T) {
|
||||
testGPGArmor := `-----BEGIN PGP PUBLIC KEY BLOCK-----
|
||||
Version: GnuPG v2
|
||||
|
||||
mFMEV6HwkhMJKyQDAwIIAQEHAgMEUsvJO/j5dFMRRj67qeZC9fSKBsGZdOHRj2+6
|
||||
8wssmbUuLTfT/ZjIbExETyY8hFnURRGpD2Ifyz0cKjXcbXfJtrQTRm9vYmFyIDxm
|
||||
b29AYmFyLmRlPoh/BBMTCAAnBQJZOsDIAhsDBQkJZgGABQsJCAcCBhUICQoLAgQW
|
||||
AgMBAh4BAheAAAoJEGuJTd/DBMzmNVQA/2beUrv1yU4gyvCiPDEm3pK42cSfaL5D
|
||||
muCtPCUg9hlWAP4yq6M78NW8STfsXgn6oeziMYiHSTmV14nOamLuwwDWM7hXBFeh
|
||||
8JISCSskAwMCCAEBBwIDBG3A+XfINAZp1CTse2mRNgeUE5DbUtEpO8ALXKA1UQsQ
|
||||
DLKq27b7zTgawgXIGUGP6mWsJ5oH7MNAJ/uKTsYmX40DAQgHiGcEGBMIAA8FAleh
|
||||
8JICGwwFCQlmAYAACgkQa4lN38MEzOZwKAD/QKyerAgcvzzLaqvtap3XvpYcw9tc
|
||||
OyjLLnFQiVmq7kEA/0z0CQe3ZQiQIq5zrs7Nh1XRkFAo8GlU/SGC9XFFi722
|
||||
=ZiSe
|
||||
-----END PGP PUBLIC KEY BLOCK-----`
|
||||
|
||||
key, err := checkArmoredGPGKeyString(testGPGArmor)
|
||||
assert.NoError(t, err, "Could not parse a valid GPG public armored brainpoolP256r1 key", key)
|
||||
//TODO verify value of key
|
||||
}
|
||||
|
||||
|
@ -79,11 +100,11 @@ MkM/fdpyc2hY7Dl/+qFmN5MG5yGmMpQcX+RNNR222ibNC1D3wg==
|
|||
=i9b7
|
||||
-----END PGP PUBLIC KEY BLOCK-----`
|
||||
ekey, err := checkArmoredGPGKeyString(testGPGArmor)
|
||||
assert.Nil(t, err, "Could not parse a valid GPG armored key", ekey)
|
||||
assert.NoError(t, err, "Could not parse a valid GPG armored key", ekey)
|
||||
|
||||
pubkey := ekey.PrimaryKey
|
||||
content, err := base64EncPubKey(pubkey)
|
||||
assert.Nil(t, err, "Could not base64 encode a valid PublicKey content", ekey)
|
||||
assert.NoError(t, err, "Could not base64 encode a valid PublicKey content", ekey)
|
||||
|
||||
key := &GPGKey{
|
||||
KeyID: pubkey.KeyIdString(),
|
||||
|
@ -144,21 +165,21 @@ Unknown GPG key with good email
|
|||
`
|
||||
//Reading Sign
|
||||
goodSig, err := extractSignature(testGoodSigArmor)
|
||||
assert.Nil(t, err, "Could not parse a valid GPG armored signature", testGoodSigArmor)
|
||||
assert.NoError(t, err, "Could not parse a valid GPG armored signature", testGoodSigArmor)
|
||||
badSig, err := extractSignature(testBadSigArmor)
|
||||
assert.Nil(t, err, "Could not parse a valid GPG armored signature", testBadSigArmor)
|
||||
assert.NoError(t, err, "Could not parse a valid GPG armored signature", testBadSigArmor)
|
||||
|
||||
//Generating hash of commit
|
||||
goodHash, err := populateHash(goodSig.Hash, []byte(testGoodPayload))
|
||||
assert.Nil(t, err, "Could not generate a valid hash of payload", testGoodPayload)
|
||||
assert.NoError(t, err, "Could not generate a valid hash of payload", testGoodPayload)
|
||||
badHash, err := populateHash(badSig.Hash, []byte(testBadPayload))
|
||||
assert.Nil(t, err, "Could not generate a valid hash of payload", testBadPayload)
|
||||
assert.NoError(t, err, "Could not generate a valid hash of payload", testBadPayload)
|
||||
|
||||
//Verify
|
||||
err = verifySign(goodSig, goodHash, key)
|
||||
assert.Nil(t, err, "Could not validate a good signature")
|
||||
assert.NoError(t, err, "Could not validate a good signature")
|
||||
err = verifySign(badSig, badHash, key)
|
||||
assert.NotNil(t, err, "Validate a bad signature")
|
||||
assert.Error(t, err, "Validate a bad signature")
|
||||
err = verifySign(goodSig, goodHash, cannotsignkey)
|
||||
assert.NotNil(t, err, "Validate a bad signature with a kay that can not sign")
|
||||
assert.Error(t, err, "Validate a bad signature with a kay that can not sign")
|
||||
}
|
||||
|
|
27
vendor/github.com/keybase/go-crypto/LICENSE
generated
vendored
Normal file
27
vendor/github.com/keybase/go-crypto/LICENSE
generated
vendored
Normal file
|
@ -0,0 +1,27 @@
|
|||
Copyright (c) 2009 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
22
vendor/github.com/keybase/go-crypto/PATENTS
generated
vendored
Normal file
22
vendor/github.com/keybase/go-crypto/PATENTS
generated
vendored
Normal file
|
@ -0,0 +1,22 @@
|
|||
Additional IP Rights Grant (Patents)
|
||||
|
||||
"This implementation" means the copyrightable works distributed by
|
||||
Google as part of the Go project.
|
||||
|
||||
Google hereby grants to You a perpetual, worldwide, non-exclusive,
|
||||
no-charge, royalty-free, irrevocable (except as stated in this section)
|
||||
patent license to make, have made, use, offer to sell, sell, import,
|
||||
transfer and otherwise run, modify and propagate the contents of this
|
||||
implementation of Go, where such license applies only to those patent
|
||||
claims, both currently owned or controlled by Google and acquired in
|
||||
the future, licensable by Google that are necessarily infringed by this
|
||||
implementation of Go. This grant does not include claims that would be
|
||||
infringed only as a consequence of further modification of this
|
||||
implementation. If you or your agent or exclusive licensee institute or
|
||||
order or agree to the institution of patent litigation against any
|
||||
entity (including a cross-claim or counterclaim in a lawsuit) alleging
|
||||
that this implementation of Go or any code incorporated within this
|
||||
implementation of Go constitutes direct or contributory patent
|
||||
infringement, or inducement of patent infringement, then any patent
|
||||
rights granted to you under this License for this implementation of Go
|
||||
shall terminate as of the date such litigation is filed.
|
134
vendor/github.com/keybase/go-crypto/brainpool/brainpool.go
generated
vendored
Normal file
134
vendor/github.com/keybase/go-crypto/brainpool/brainpool.go
generated
vendored
Normal file
|
@ -0,0 +1,134 @@
|
|||
// Package brainpool implements Brainpool elliptic curves.
|
||||
// Implementation of rcurves is from github.com/ebfe/brainpool
|
||||
// Note that these curves are implemented with naive, non-constant time operations
|
||||
// and are likely not suitable for enviroments where timing attacks are a concern.
|
||||
package brainpool
|
||||
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var (
|
||||
once sync.Once
|
||||
p256t1, p384t1, p512t1 *elliptic.CurveParams
|
||||
p256r1, p384r1, p512r1 *rcurve
|
||||
)
|
||||
|
||||
func initAll() {
|
||||
initP256t1()
|
||||
initP384t1()
|
||||
initP512t1()
|
||||
initP256r1()
|
||||
initP384r1()
|
||||
initP512r1()
|
||||
}
|
||||
|
||||
func initP256t1() {
|
||||
p256t1 = &elliptic.CurveParams{Name: "brainpoolP256t1"}
|
||||
p256t1.P, _ = new(big.Int).SetString("A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377", 16)
|
||||
p256t1.N, _ = new(big.Int).SetString("A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", 16)
|
||||
p256t1.B, _ = new(big.Int).SetString("662C61C430D84EA4FE66A7733D0B76B7BF93EBC4AF2F49256AE58101FEE92B04", 16)
|
||||
p256t1.Gx, _ = new(big.Int).SetString("A3E8EB3CC1CFE7B7732213B23A656149AFA142C47AAFBC2B79A191562E1305F4", 16)
|
||||
p256t1.Gy, _ = new(big.Int).SetString("2D996C823439C56D7F7B22E14644417E69BCB6DE39D027001DABE8F35B25C9BE", 16)
|
||||
p256t1.BitSize = 256
|
||||
}
|
||||
|
||||
func initP256r1() {
|
||||
twisted := p256t1
|
||||
params := &elliptic.CurveParams{
|
||||
Name: "brainpoolP256r1",
|
||||
P: twisted.P,
|
||||
N: twisted.N,
|
||||
BitSize: twisted.BitSize,
|
||||
}
|
||||
params.Gx, _ = new(big.Int).SetString("8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262", 16)
|
||||
params.Gy, _ = new(big.Int).SetString("547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997", 16)
|
||||
z, _ := new(big.Int).SetString("3E2D4BD9597B58639AE7AA669CAB9837CF5CF20A2C852D10F655668DFC150EF0", 16)
|
||||
p256r1 = newrcurve(twisted, params, z)
|
||||
}
|
||||
|
||||
func initP384t1() {
|
||||
p384t1 = &elliptic.CurveParams{Name: "brainpoolP384t1"}
|
||||
p384t1.P, _ = new(big.Int).SetString("8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53", 16)
|
||||
p384t1.N, _ = new(big.Int).SetString("8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565", 16)
|
||||
p384t1.B, _ = new(big.Int).SetString("7F519EADA7BDA81BD826DBA647910F8C4B9346ED8CCDC64E4B1ABD11756DCE1D2074AA263B88805CED70355A33B471EE", 16)
|
||||
p384t1.Gx, _ = new(big.Int).SetString("18DE98B02DB9A306F2AFCD7235F72A819B80AB12EBD653172476FECD462AABFFC4FF191B946A5F54D8D0AA2F418808CC", 16)
|
||||
p384t1.Gy, _ = new(big.Int).SetString("25AB056962D30651A114AFD2755AD336747F93475B7A1FCA3B88F2B6A208CCFE469408584DC2B2912675BF5B9E582928", 16)
|
||||
p384t1.BitSize = 384
|
||||
}
|
||||
|
||||
func initP384r1() {
|
||||
twisted := p384t1
|
||||
params := &elliptic.CurveParams{
|
||||
Name: "brainpoolP384r1",
|
||||
P: twisted.P,
|
||||
N: twisted.N,
|
||||
BitSize: twisted.BitSize,
|
||||
}
|
||||
params.Gx, _ = new(big.Int).SetString("1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E", 16)
|
||||
params.Gy, _ = new(big.Int).SetString("8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315", 16)
|
||||
z, _ := new(big.Int).SetString("41DFE8DD399331F7166A66076734A89CD0D2BCDB7D068E44E1F378F41ECBAE97D2D63DBC87BCCDDCCC5DA39E8589291C", 16)
|
||||
p384r1 = newrcurve(twisted, params, z)
|
||||
}
|
||||
|
||||
func initP512t1() {
|
||||
p512t1 = &elliptic.CurveParams{Name: "brainpoolP512t1"}
|
||||
p512t1.P, _ = new(big.Int).SetString("AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3", 16)
|
||||
p512t1.N, _ = new(big.Int).SetString("AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069", 16)
|
||||
p512t1.B, _ = new(big.Int).SetString("7CBBBCF9441CFAB76E1890E46884EAE321F70C0BCB4981527897504BEC3E36A62BCDFA2304976540F6450085F2DAE145C22553B465763689180EA2571867423E", 16)
|
||||
p512t1.Gx, _ = new(big.Int).SetString("640ECE5C12788717B9C1BA06CBC2A6FEBA85842458C56DDE9DB1758D39C0313D82BA51735CDB3EA499AA77A7D6943A64F7A3F25FE26F06B51BAA2696FA9035DA", 16)
|
||||
p512t1.Gy, _ = new(big.Int).SetString("5B534BD595F5AF0FA2C892376C84ACE1BB4E3019B71634C01131159CAE03CEE9D9932184BEEF216BD71DF2DADF86A627306ECFF96DBB8BACE198B61E00F8B332", 16)
|
||||
p512t1.BitSize = 512
|
||||
}
|
||||
|
||||
func initP512r1() {
|
||||
twisted := p512t1
|
||||
params := &elliptic.CurveParams{
|
||||
Name: "brainpoolP512r1",
|
||||
P: twisted.P,
|
||||
N: twisted.N,
|
||||
BitSize: twisted.BitSize,
|
||||
}
|
||||
params.Gx, _ = new(big.Int).SetString("81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822", 16)
|
||||
params.Gy, _ = new(big.Int).SetString("7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892", 16)
|
||||
z, _ := new(big.Int).SetString("12EE58E6764838B69782136F0F2D3BA06E27695716054092E60A80BEDB212B64E585D90BCE13761F85C3F1D2A64E3BE8FEA2220F01EBA5EEB0F35DBD29D922AB", 16)
|
||||
p512r1 = newrcurve(twisted, params, z)
|
||||
}
|
||||
|
||||
// P256t1 returns a Curve which implements Brainpool P256t1 (see RFC 5639, section 3.4)
|
||||
func P256t1() elliptic.Curve {
|
||||
once.Do(initAll)
|
||||
return p256t1
|
||||
}
|
||||
|
||||
// P256r1 returns a Curve which implements Brainpool P256r1 (see RFC 5639, section 3.4)
|
||||
func P256r1() elliptic.Curve {
|
||||
once.Do(initAll)
|
||||
return p256r1
|
||||
}
|
||||
|
||||
// P384t1 returns a Curve which implements Brainpool P384t1 (see RFC 5639, section 3.6)
|
||||
func P384t1() elliptic.Curve {
|
||||
once.Do(initAll)
|
||||
return p384t1
|
||||
}
|
||||
|
||||
// P384r1 returns a Curve which implements Brainpool P384r1 (see RFC 5639, section 3.6)
|
||||
func P384r1() elliptic.Curve {
|
||||
once.Do(initAll)
|
||||
return p384r1
|
||||
}
|
||||
|
||||
// P512t1 returns a Curve which implements Brainpool P512t1 (see RFC 5639, section 3.7)
|
||||
func P512t1() elliptic.Curve {
|
||||
once.Do(initAll)
|
||||
return p512t1
|
||||
}
|
||||
|
||||
// P512r1 returns a Curve which implements Brainpool P512r1 (see RFC 5639, section 3.7)
|
||||
func P512r1() elliptic.Curve {
|
||||
once.Do(initAll)
|
||||
return p512r1
|
||||
}
|
83
vendor/github.com/keybase/go-crypto/brainpool/rcurve.go
generated
vendored
Normal file
83
vendor/github.com/keybase/go-crypto/brainpool/rcurve.go
generated
vendored
Normal file
|
@ -0,0 +1,83 @@
|
|||
package brainpool
|
||||
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
var _ elliptic.Curve = (*rcurve)(nil)
|
||||
|
||||
type rcurve struct {
|
||||
twisted elliptic.Curve
|
||||
params *elliptic.CurveParams
|
||||
z *big.Int
|
||||
zinv *big.Int
|
||||
z2 *big.Int
|
||||
z3 *big.Int
|
||||
zinv2 *big.Int
|
||||
zinv3 *big.Int
|
||||
}
|
||||
|
||||
var (
|
||||
two = big.NewInt(2)
|
||||
three = big.NewInt(3)
|
||||
)
|
||||
|
||||
func newrcurve(twisted elliptic.Curve, params *elliptic.CurveParams, z *big.Int) *rcurve {
|
||||
zinv := new(big.Int).ModInverse(z, params.P)
|
||||
return &rcurve{
|
||||
twisted: twisted,
|
||||
params: params,
|
||||
z: z,
|
||||
zinv: zinv,
|
||||
z2: new(big.Int).Exp(z, two, params.P),
|
||||
z3: new(big.Int).Exp(z, three, params.P),
|
||||
zinv2: new(big.Int).Exp(zinv, two, params.P),
|
||||
zinv3: new(big.Int).Exp(zinv, three, params.P),
|
||||
}
|
||||
}
|
||||
|
||||
func (curve *rcurve) toTwisted(x, y *big.Int) (*big.Int, *big.Int) {
|
||||
var tx, ty big.Int
|
||||
tx.Mul(x, curve.z2)
|
||||
tx.Mod(&tx, curve.params.P)
|
||||
ty.Mul(y, curve.z3)
|
||||
ty.Mod(&ty, curve.params.P)
|
||||
return &tx, &ty
|
||||
}
|
||||
|
||||
func (curve *rcurve) fromTwisted(tx, ty *big.Int) (*big.Int, *big.Int) {
|
||||
var x, y big.Int
|
||||
x.Mul(tx, curve.zinv2)
|
||||
x.Mod(&x, curve.params.P)
|
||||
y.Mul(ty, curve.zinv3)
|
||||
y.Mod(&y, curve.params.P)
|
||||
return &x, &y
|
||||
}
|
||||
|
||||
func (curve *rcurve) Params() *elliptic.CurveParams {
|
||||
return curve.params
|
||||
}
|
||||
|
||||
func (curve *rcurve) IsOnCurve(x, y *big.Int) bool {
|
||||
return curve.twisted.IsOnCurve(curve.toTwisted(x, y))
|
||||
}
|
||||
|
||||
func (curve *rcurve) Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
|
||||
tx1, ty1 := curve.toTwisted(x1, y1)
|
||||
tx2, ty2 := curve.toTwisted(x2, y2)
|
||||
return curve.fromTwisted(curve.twisted.Add(tx1, ty1, tx2, ty2))
|
||||
}
|
||||
|
||||
func (curve *rcurve) Double(x1, y1 *big.Int) (x, y *big.Int) {
|
||||
return curve.fromTwisted(curve.twisted.Double(curve.toTwisted(x1, y1)))
|
||||
}
|
||||
|
||||
func (curve *rcurve) ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int) {
|
||||
tx1, ty1 := curve.toTwisted(x1, y1)
|
||||
return curve.fromTwisted(curve.twisted.ScalarMult(tx1, ty1, scalar))
|
||||
}
|
||||
|
||||
func (curve *rcurve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
|
||||
return curve.fromTwisted(curve.twisted.ScalarBaseMult(scalar))
|
||||
}
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
// Package cast5 implements CAST5, as defined in RFC 2144. CAST5 is a common
|
||||
// OpenPGP cipher.
|
||||
package cast5 // import "golang.org/x/crypto/cast5"
|
||||
package cast5
|
||||
|
||||
import "errors"
|
||||
|
20
vendor/github.com/keybase/go-crypto/curve25519/const_amd64.s
generated
vendored
Normal file
20
vendor/github.com/keybase/go-crypto/curve25519/const_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,20 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
DATA ·REDMASK51(SB)/8, $0x0007FFFFFFFFFFFF
|
||||
GLOBL ·REDMASK51(SB), 8, $8
|
||||
|
||||
DATA ·_121666_213(SB)/8, $996687872
|
||||
GLOBL ·_121666_213(SB), 8, $8
|
||||
|
||||
DATA ·_2P0(SB)/8, $0xFFFFFFFFFFFDA
|
||||
GLOBL ·_2P0(SB), 8, $8
|
||||
|
||||
DATA ·_2P1234(SB)/8, $0xFFFFFFFFFFFFE
|
||||
GLOBL ·_2P1234(SB), 8, $8
|
88
vendor/github.com/keybase/go-crypto/curve25519/cswap_amd64.s
generated
vendored
Normal file
88
vendor/github.com/keybase/go-crypto/curve25519/cswap_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,88 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
// func cswap(inout *[5]uint64, v uint64)
|
||||
TEXT ·cswap(SB),7,$0
|
||||
MOVQ inout+0(FP),DI
|
||||
MOVQ v+8(FP),SI
|
||||
|
||||
CMPQ SI,$1
|
||||
MOVQ 0(DI),SI
|
||||
MOVQ 80(DI),DX
|
||||
MOVQ 8(DI),CX
|
||||
MOVQ 88(DI),R8
|
||||
MOVQ SI,R9
|
||||
CMOVQEQ DX,SI
|
||||
CMOVQEQ R9,DX
|
||||
MOVQ CX,R9
|
||||
CMOVQEQ R8,CX
|
||||
CMOVQEQ R9,R8
|
||||
MOVQ SI,0(DI)
|
||||
MOVQ DX,80(DI)
|
||||
MOVQ CX,8(DI)
|
||||
MOVQ R8,88(DI)
|
||||
MOVQ 16(DI),SI
|
||||
MOVQ 96(DI),DX
|
||||
MOVQ 24(DI),CX
|
||||
MOVQ 104(DI),R8
|
||||
MOVQ SI,R9
|
||||
CMOVQEQ DX,SI
|
||||
CMOVQEQ R9,DX
|
||||
MOVQ CX,R9
|
||||
CMOVQEQ R8,CX
|
||||
CMOVQEQ R9,R8
|
||||
MOVQ SI,16(DI)
|
||||
MOVQ DX,96(DI)
|
||||
MOVQ CX,24(DI)
|
||||
MOVQ R8,104(DI)
|
||||
MOVQ 32(DI),SI
|
||||
MOVQ 112(DI),DX
|
||||
MOVQ 40(DI),CX
|
||||
MOVQ 120(DI),R8
|
||||
MOVQ SI,R9
|
||||
CMOVQEQ DX,SI
|
||||
CMOVQEQ R9,DX
|
||||
MOVQ CX,R9
|
||||
CMOVQEQ R8,CX
|
||||
CMOVQEQ R9,R8
|
||||
MOVQ SI,32(DI)
|
||||
MOVQ DX,112(DI)
|
||||
MOVQ CX,40(DI)
|
||||
MOVQ R8,120(DI)
|
||||
MOVQ 48(DI),SI
|
||||
MOVQ 128(DI),DX
|
||||
MOVQ 56(DI),CX
|
||||
MOVQ 136(DI),R8
|
||||
MOVQ SI,R9
|
||||
CMOVQEQ DX,SI
|
||||
CMOVQEQ R9,DX
|
||||
MOVQ CX,R9
|
||||
CMOVQEQ R8,CX
|
||||
CMOVQEQ R9,R8
|
||||
MOVQ SI,48(DI)
|
||||
MOVQ DX,128(DI)
|
||||
MOVQ CX,56(DI)
|
||||
MOVQ R8,136(DI)
|
||||
MOVQ 64(DI),SI
|
||||
MOVQ 144(DI),DX
|
||||
MOVQ 72(DI),CX
|
||||
MOVQ 152(DI),R8
|
||||
MOVQ SI,R9
|
||||
CMOVQEQ DX,SI
|
||||
CMOVQEQ R9,DX
|
||||
MOVQ CX,R9
|
||||
CMOVQEQ R8,CX
|
||||
CMOVQEQ R9,R8
|
||||
MOVQ SI,64(DI)
|
||||
MOVQ DX,144(DI)
|
||||
MOVQ CX,72(DI)
|
||||
MOVQ R8,152(DI)
|
||||
MOVQ DI,AX
|
||||
MOVQ SI,DX
|
||||
RET
|
841
vendor/github.com/keybase/go-crypto/curve25519/curve25519.go
generated
vendored
Normal file
841
vendor/github.com/keybase/go-crypto/curve25519/curve25519.go
generated
vendored
Normal file
|
@ -0,0 +1,841 @@
|
|||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// We have a implementation in amd64 assembly so this code is only run on
|
||||
// non-amd64 platforms. The amd64 assembly does not support gccgo.
|
||||
// +build !amd64 gccgo appengine
|
||||
|
||||
package curve25519
|
||||
|
||||
// This code is a port of the public domain, "ref10" implementation of
|
||||
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
|
||||
|
||||
// fieldElement represents an element of the field GF(2^255 - 19). An element
|
||||
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
|
||||
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
|
||||
// context.
|
||||
type fieldElement [10]int32
|
||||
|
||||
func feZero(fe *fieldElement) {
|
||||
for i := range fe {
|
||||
fe[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
func feOne(fe *fieldElement) {
|
||||
feZero(fe)
|
||||
fe[0] = 1
|
||||
}
|
||||
|
||||
func feAdd(dst, a, b *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = a[i] + b[i]
|
||||
}
|
||||
}
|
||||
|
||||
func feSub(dst, a, b *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = a[i] - b[i]
|
||||
}
|
||||
}
|
||||
|
||||
func feCopy(dst, src *fieldElement) {
|
||||
for i := range dst {
|
||||
dst[i] = src[i]
|
||||
}
|
||||
}
|
||||
|
||||
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
|
||||
//
|
||||
// Preconditions: b in {0,1}.
|
||||
func feCSwap(f, g *fieldElement, b int32) {
|
||||
var x fieldElement
|
||||
b = -b
|
||||
for i := range x {
|
||||
x[i] = b & (f[i] ^ g[i])
|
||||
}
|
||||
|
||||
for i := range f {
|
||||
f[i] ^= x[i]
|
||||
}
|
||||
for i := range g {
|
||||
g[i] ^= x[i]
|
||||
}
|
||||
}
|
||||
|
||||
// load3 reads a 24-bit, little-endian value from in.
|
||||
func load3(in []byte) int64 {
|
||||
var r int64
|
||||
r = int64(in[0])
|
||||
r |= int64(in[1]) << 8
|
||||
r |= int64(in[2]) << 16
|
||||
return r
|
||||
}
|
||||
|
||||
// load4 reads a 32-bit, little-endian value from in.
|
||||
func load4(in []byte) int64 {
|
||||
var r int64
|
||||
r = int64(in[0])
|
||||
r |= int64(in[1]) << 8
|
||||
r |= int64(in[2]) << 16
|
||||
r |= int64(in[3]) << 24
|
||||
return r
|
||||
}
|
||||
|
||||
func feFromBytes(dst *fieldElement, src *[32]byte) {
|
||||
h0 := load4(src[:])
|
||||
h1 := load3(src[4:]) << 6
|
||||
h2 := load3(src[7:]) << 5
|
||||
h3 := load3(src[10:]) << 3
|
||||
h4 := load3(src[13:]) << 2
|
||||
h5 := load4(src[16:])
|
||||
h6 := load3(src[20:]) << 7
|
||||
h7 := load3(src[23:]) << 5
|
||||
h8 := load3(src[26:]) << 4
|
||||
h9 := load3(src[29:]) << 2
|
||||
|
||||
var carry [10]int64
|
||||
carry[9] = (h9 + 1<<24) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
carry[1] = (h1 + 1<<24) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[3] = (h3 + 1<<24) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[5] = (h5 + 1<<24) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
carry[7] = (h7 + 1<<24) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[0] = (h0 + 1<<25) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[2] = (h2 + 1<<25) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[4] = (h4 + 1<<25) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[6] = (h6 + 1<<25) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
carry[8] = (h8 + 1<<25) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
dst[0] = int32(h0)
|
||||
dst[1] = int32(h1)
|
||||
dst[2] = int32(h2)
|
||||
dst[3] = int32(h3)
|
||||
dst[4] = int32(h4)
|
||||
dst[5] = int32(h5)
|
||||
dst[6] = int32(h6)
|
||||
dst[7] = int32(h7)
|
||||
dst[8] = int32(h8)
|
||||
dst[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feToBytes marshals h to s.
|
||||
// Preconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
//
|
||||
// Write p=2^255-19; q=floor(h/p).
|
||||
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
|
||||
//
|
||||
// Proof:
|
||||
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
|
||||
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
|
||||
//
|
||||
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
|
||||
// Then 0<y<1.
|
||||
//
|
||||
// Write r=h-pq.
|
||||
// Have 0<=r<=p-1=2^255-20.
|
||||
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
|
||||
//
|
||||
// Write x=r+19(2^-255)r+y.
|
||||
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
|
||||
//
|
||||
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
|
||||
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
|
||||
func feToBytes(s *[32]byte, h *fieldElement) {
|
||||
var carry [10]int32
|
||||
|
||||
q := (19*h[9] + (1 << 24)) >> 25
|
||||
q = (h[0] + q) >> 26
|
||||
q = (h[1] + q) >> 25
|
||||
q = (h[2] + q) >> 26
|
||||
q = (h[3] + q) >> 25
|
||||
q = (h[4] + q) >> 26
|
||||
q = (h[5] + q) >> 25
|
||||
q = (h[6] + q) >> 26
|
||||
q = (h[7] + q) >> 25
|
||||
q = (h[8] + q) >> 26
|
||||
q = (h[9] + q) >> 25
|
||||
|
||||
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
|
||||
h[0] += 19 * q
|
||||
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
|
||||
|
||||
carry[0] = h[0] >> 26
|
||||
h[1] += carry[0]
|
||||
h[0] -= carry[0] << 26
|
||||
carry[1] = h[1] >> 25
|
||||
h[2] += carry[1]
|
||||
h[1] -= carry[1] << 25
|
||||
carry[2] = h[2] >> 26
|
||||
h[3] += carry[2]
|
||||
h[2] -= carry[2] << 26
|
||||
carry[3] = h[3] >> 25
|
||||
h[4] += carry[3]
|
||||
h[3] -= carry[3] << 25
|
||||
carry[4] = h[4] >> 26
|
||||
h[5] += carry[4]
|
||||
h[4] -= carry[4] << 26
|
||||
carry[5] = h[5] >> 25
|
||||
h[6] += carry[5]
|
||||
h[5] -= carry[5] << 25
|
||||
carry[6] = h[6] >> 26
|
||||
h[7] += carry[6]
|
||||
h[6] -= carry[6] << 26
|
||||
carry[7] = h[7] >> 25
|
||||
h[8] += carry[7]
|
||||
h[7] -= carry[7] << 25
|
||||
carry[8] = h[8] >> 26
|
||||
h[9] += carry[8]
|
||||
h[8] -= carry[8] << 26
|
||||
carry[9] = h[9] >> 25
|
||||
h[9] -= carry[9] << 25
|
||||
// h10 = carry9
|
||||
|
||||
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
|
||||
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
|
||||
// evidently 2^255 h10-2^255 q = 0.
|
||||
// Goal: Output h[0]+...+2^230 h[9].
|
||||
|
||||
s[0] = byte(h[0] >> 0)
|
||||
s[1] = byte(h[0] >> 8)
|
||||
s[2] = byte(h[0] >> 16)
|
||||
s[3] = byte((h[0] >> 24) | (h[1] << 2))
|
||||
s[4] = byte(h[1] >> 6)
|
||||
s[5] = byte(h[1] >> 14)
|
||||
s[6] = byte((h[1] >> 22) | (h[2] << 3))
|
||||
s[7] = byte(h[2] >> 5)
|
||||
s[8] = byte(h[2] >> 13)
|
||||
s[9] = byte((h[2] >> 21) | (h[3] << 5))
|
||||
s[10] = byte(h[3] >> 3)
|
||||
s[11] = byte(h[3] >> 11)
|
||||
s[12] = byte((h[3] >> 19) | (h[4] << 6))
|
||||
s[13] = byte(h[4] >> 2)
|
||||
s[14] = byte(h[4] >> 10)
|
||||
s[15] = byte(h[4] >> 18)
|
||||
s[16] = byte(h[5] >> 0)
|
||||
s[17] = byte(h[5] >> 8)
|
||||
s[18] = byte(h[5] >> 16)
|
||||
s[19] = byte((h[5] >> 24) | (h[6] << 1))
|
||||
s[20] = byte(h[6] >> 7)
|
||||
s[21] = byte(h[6] >> 15)
|
||||
s[22] = byte((h[6] >> 23) | (h[7] << 3))
|
||||
s[23] = byte(h[7] >> 5)
|
||||
s[24] = byte(h[7] >> 13)
|
||||
s[25] = byte((h[7] >> 21) | (h[8] << 4))
|
||||
s[26] = byte(h[8] >> 4)
|
||||
s[27] = byte(h[8] >> 12)
|
||||
s[28] = byte((h[8] >> 20) | (h[9] << 6))
|
||||
s[29] = byte(h[9] >> 2)
|
||||
s[30] = byte(h[9] >> 10)
|
||||
s[31] = byte(h[9] >> 18)
|
||||
}
|
||||
|
||||
// feMul calculates h = f * g
|
||||
// Can overlap h with f or g.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
//
|
||||
// Notes on implementation strategy:
|
||||
//
|
||||
// Using schoolbook multiplication.
|
||||
// Karatsuba would save a little in some cost models.
|
||||
//
|
||||
// Most multiplications by 2 and 19 are 32-bit precomputations;
|
||||
// cheaper than 64-bit postcomputations.
|
||||
//
|
||||
// There is one remaining multiplication by 19 in the carry chain;
|
||||
// one *19 precomputation can be merged into this,
|
||||
// but the resulting data flow is considerably less clean.
|
||||
//
|
||||
// There are 12 carries below.
|
||||
// 10 of them are 2-way parallelizable and vectorizable.
|
||||
// Can get away with 11 carries, but then data flow is much deeper.
|
||||
//
|
||||
// With tighter constraints on inputs can squeeze carries into int32.
|
||||
func feMul(h, f, g *fieldElement) {
|
||||
f0 := f[0]
|
||||
f1 := f[1]
|
||||
f2 := f[2]
|
||||
f3 := f[3]
|
||||
f4 := f[4]
|
||||
f5 := f[5]
|
||||
f6 := f[6]
|
||||
f7 := f[7]
|
||||
f8 := f[8]
|
||||
f9 := f[9]
|
||||
g0 := g[0]
|
||||
g1 := g[1]
|
||||
g2 := g[2]
|
||||
g3 := g[3]
|
||||
g4 := g[4]
|
||||
g5 := g[5]
|
||||
g6 := g[6]
|
||||
g7 := g[7]
|
||||
g8 := g[8]
|
||||
g9 := g[9]
|
||||
g1_19 := 19 * g1 // 1.4*2^29
|
||||
g2_19 := 19 * g2 // 1.4*2^30; still ok
|
||||
g3_19 := 19 * g3
|
||||
g4_19 := 19 * g4
|
||||
g5_19 := 19 * g5
|
||||
g6_19 := 19 * g6
|
||||
g7_19 := 19 * g7
|
||||
g8_19 := 19 * g8
|
||||
g9_19 := 19 * g9
|
||||
f1_2 := 2 * f1
|
||||
f3_2 := 2 * f3
|
||||
f5_2 := 2 * f5
|
||||
f7_2 := 2 * f7
|
||||
f9_2 := 2 * f9
|
||||
f0g0 := int64(f0) * int64(g0)
|
||||
f0g1 := int64(f0) * int64(g1)
|
||||
f0g2 := int64(f0) * int64(g2)
|
||||
f0g3 := int64(f0) * int64(g3)
|
||||
f0g4 := int64(f0) * int64(g4)
|
||||
f0g5 := int64(f0) * int64(g5)
|
||||
f0g6 := int64(f0) * int64(g6)
|
||||
f0g7 := int64(f0) * int64(g7)
|
||||
f0g8 := int64(f0) * int64(g8)
|
||||
f0g9 := int64(f0) * int64(g9)
|
||||
f1g0 := int64(f1) * int64(g0)
|
||||
f1g1_2 := int64(f1_2) * int64(g1)
|
||||
f1g2 := int64(f1) * int64(g2)
|
||||
f1g3_2 := int64(f1_2) * int64(g3)
|
||||
f1g4 := int64(f1) * int64(g4)
|
||||
f1g5_2 := int64(f1_2) * int64(g5)
|
||||
f1g6 := int64(f1) * int64(g6)
|
||||
f1g7_2 := int64(f1_2) * int64(g7)
|
||||
f1g8 := int64(f1) * int64(g8)
|
||||
f1g9_38 := int64(f1_2) * int64(g9_19)
|
||||
f2g0 := int64(f2) * int64(g0)
|
||||
f2g1 := int64(f2) * int64(g1)
|
||||
f2g2 := int64(f2) * int64(g2)
|
||||
f2g3 := int64(f2) * int64(g3)
|
||||
f2g4 := int64(f2) * int64(g4)
|
||||
f2g5 := int64(f2) * int64(g5)
|
||||
f2g6 := int64(f2) * int64(g6)
|
||||
f2g7 := int64(f2) * int64(g7)
|
||||
f2g8_19 := int64(f2) * int64(g8_19)
|
||||
f2g9_19 := int64(f2) * int64(g9_19)
|
||||
f3g0 := int64(f3) * int64(g0)
|
||||
f3g1_2 := int64(f3_2) * int64(g1)
|
||||
f3g2 := int64(f3) * int64(g2)
|
||||
f3g3_2 := int64(f3_2) * int64(g3)
|
||||
f3g4 := int64(f3) * int64(g4)
|
||||
f3g5_2 := int64(f3_2) * int64(g5)
|
||||
f3g6 := int64(f3) * int64(g6)
|
||||
f3g7_38 := int64(f3_2) * int64(g7_19)
|
||||
f3g8_19 := int64(f3) * int64(g8_19)
|
||||
f3g9_38 := int64(f3_2) * int64(g9_19)
|
||||
f4g0 := int64(f4) * int64(g0)
|
||||
f4g1 := int64(f4) * int64(g1)
|
||||
f4g2 := int64(f4) * int64(g2)
|
||||
f4g3 := int64(f4) * int64(g3)
|
||||
f4g4 := int64(f4) * int64(g4)
|
||||
f4g5 := int64(f4) * int64(g5)
|
||||
f4g6_19 := int64(f4) * int64(g6_19)
|
||||
f4g7_19 := int64(f4) * int64(g7_19)
|
||||
f4g8_19 := int64(f4) * int64(g8_19)
|
||||
f4g9_19 := int64(f4) * int64(g9_19)
|
||||
f5g0 := int64(f5) * int64(g0)
|
||||
f5g1_2 := int64(f5_2) * int64(g1)
|
||||
f5g2 := int64(f5) * int64(g2)
|
||||
f5g3_2 := int64(f5_2) * int64(g3)
|
||||
f5g4 := int64(f5) * int64(g4)
|
||||
f5g5_38 := int64(f5_2) * int64(g5_19)
|
||||
f5g6_19 := int64(f5) * int64(g6_19)
|
||||
f5g7_38 := int64(f5_2) * int64(g7_19)
|
||||
f5g8_19 := int64(f5) * int64(g8_19)
|
||||
f5g9_38 := int64(f5_2) * int64(g9_19)
|
||||
f6g0 := int64(f6) * int64(g0)
|
||||
f6g1 := int64(f6) * int64(g1)
|
||||
f6g2 := int64(f6) * int64(g2)
|
||||
f6g3 := int64(f6) * int64(g3)
|
||||
f6g4_19 := int64(f6) * int64(g4_19)
|
||||
f6g5_19 := int64(f6) * int64(g5_19)
|
||||
f6g6_19 := int64(f6) * int64(g6_19)
|
||||
f6g7_19 := int64(f6) * int64(g7_19)
|
||||
f6g8_19 := int64(f6) * int64(g8_19)
|
||||
f6g9_19 := int64(f6) * int64(g9_19)
|
||||
f7g0 := int64(f7) * int64(g0)
|
||||
f7g1_2 := int64(f7_2) * int64(g1)
|
||||
f7g2 := int64(f7) * int64(g2)
|
||||
f7g3_38 := int64(f7_2) * int64(g3_19)
|
||||
f7g4_19 := int64(f7) * int64(g4_19)
|
||||
f7g5_38 := int64(f7_2) * int64(g5_19)
|
||||
f7g6_19 := int64(f7) * int64(g6_19)
|
||||
f7g7_38 := int64(f7_2) * int64(g7_19)
|
||||
f7g8_19 := int64(f7) * int64(g8_19)
|
||||
f7g9_38 := int64(f7_2) * int64(g9_19)
|
||||
f8g0 := int64(f8) * int64(g0)
|
||||
f8g1 := int64(f8) * int64(g1)
|
||||
f8g2_19 := int64(f8) * int64(g2_19)
|
||||
f8g3_19 := int64(f8) * int64(g3_19)
|
||||
f8g4_19 := int64(f8) * int64(g4_19)
|
||||
f8g5_19 := int64(f8) * int64(g5_19)
|
||||
f8g6_19 := int64(f8) * int64(g6_19)
|
||||
f8g7_19 := int64(f8) * int64(g7_19)
|
||||
f8g8_19 := int64(f8) * int64(g8_19)
|
||||
f8g9_19 := int64(f8) * int64(g9_19)
|
||||
f9g0 := int64(f9) * int64(g0)
|
||||
f9g1_38 := int64(f9_2) * int64(g1_19)
|
||||
f9g2_19 := int64(f9) * int64(g2_19)
|
||||
f9g3_38 := int64(f9_2) * int64(g3_19)
|
||||
f9g4_19 := int64(f9) * int64(g4_19)
|
||||
f9g5_38 := int64(f9_2) * int64(g5_19)
|
||||
f9g6_19 := int64(f9) * int64(g6_19)
|
||||
f9g7_38 := int64(f9_2) * int64(g7_19)
|
||||
f9g8_19 := int64(f9) * int64(g8_19)
|
||||
f9g9_38 := int64(f9_2) * int64(g9_19)
|
||||
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
|
||||
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
|
||||
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
|
||||
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
|
||||
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
|
||||
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
|
||||
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
|
||||
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
|
||||
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
|
||||
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
|
||||
var carry [10]int64
|
||||
|
||||
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
|
||||
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
|
||||
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
|
||||
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
// |h0| <= 2^25
|
||||
// |h4| <= 2^25
|
||||
// |h1| <= 1.51*2^58
|
||||
// |h5| <= 1.51*2^58
|
||||
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
// |h1| <= 2^24; from now on fits into int32
|
||||
// |h5| <= 2^24; from now on fits into int32
|
||||
// |h2| <= 1.21*2^59
|
||||
// |h6| <= 1.21*2^59
|
||||
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
// |h2| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h6| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h3| <= 1.51*2^58
|
||||
// |h7| <= 1.51*2^58
|
||||
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
// |h3| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h7| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h4| <= 1.52*2^33
|
||||
// |h8| <= 1.52*2^33
|
||||
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
// |h4| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h8| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h5| <= 1.01*2^24
|
||||
// |h9| <= 1.51*2^58
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
// |h9| <= 2^24; from now on fits into int32 unchanged
|
||||
// |h0| <= 1.8*2^37
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
// |h0| <= 2^25; from now on fits into int32 unchanged
|
||||
// |h1| <= 1.01*2^24
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feSquare calculates h = f*f. Can overlap h with f.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
func feSquare(h, f *fieldElement) {
|
||||
f0 := f[0]
|
||||
f1 := f[1]
|
||||
f2 := f[2]
|
||||
f3 := f[3]
|
||||
f4 := f[4]
|
||||
f5 := f[5]
|
||||
f6 := f[6]
|
||||
f7 := f[7]
|
||||
f8 := f[8]
|
||||
f9 := f[9]
|
||||
f0_2 := 2 * f0
|
||||
f1_2 := 2 * f1
|
||||
f2_2 := 2 * f2
|
||||
f3_2 := 2 * f3
|
||||
f4_2 := 2 * f4
|
||||
f5_2 := 2 * f5
|
||||
f6_2 := 2 * f6
|
||||
f7_2 := 2 * f7
|
||||
f5_38 := 38 * f5 // 1.31*2^30
|
||||
f6_19 := 19 * f6 // 1.31*2^30
|
||||
f7_38 := 38 * f7 // 1.31*2^30
|
||||
f8_19 := 19 * f8 // 1.31*2^30
|
||||
f9_38 := 38 * f9 // 1.31*2^30
|
||||
f0f0 := int64(f0) * int64(f0)
|
||||
f0f1_2 := int64(f0_2) * int64(f1)
|
||||
f0f2_2 := int64(f0_2) * int64(f2)
|
||||
f0f3_2 := int64(f0_2) * int64(f3)
|
||||
f0f4_2 := int64(f0_2) * int64(f4)
|
||||
f0f5_2 := int64(f0_2) * int64(f5)
|
||||
f0f6_2 := int64(f0_2) * int64(f6)
|
||||
f0f7_2 := int64(f0_2) * int64(f7)
|
||||
f0f8_2 := int64(f0_2) * int64(f8)
|
||||
f0f9_2 := int64(f0_2) * int64(f9)
|
||||
f1f1_2 := int64(f1_2) * int64(f1)
|
||||
f1f2_2 := int64(f1_2) * int64(f2)
|
||||
f1f3_4 := int64(f1_2) * int64(f3_2)
|
||||
f1f4_2 := int64(f1_2) * int64(f4)
|
||||
f1f5_4 := int64(f1_2) * int64(f5_2)
|
||||
f1f6_2 := int64(f1_2) * int64(f6)
|
||||
f1f7_4 := int64(f1_2) * int64(f7_2)
|
||||
f1f8_2 := int64(f1_2) * int64(f8)
|
||||
f1f9_76 := int64(f1_2) * int64(f9_38)
|
||||
f2f2 := int64(f2) * int64(f2)
|
||||
f2f3_2 := int64(f2_2) * int64(f3)
|
||||
f2f4_2 := int64(f2_2) * int64(f4)
|
||||
f2f5_2 := int64(f2_2) * int64(f5)
|
||||
f2f6_2 := int64(f2_2) * int64(f6)
|
||||
f2f7_2 := int64(f2_2) * int64(f7)
|
||||
f2f8_38 := int64(f2_2) * int64(f8_19)
|
||||
f2f9_38 := int64(f2) * int64(f9_38)
|
||||
f3f3_2 := int64(f3_2) * int64(f3)
|
||||
f3f4_2 := int64(f3_2) * int64(f4)
|
||||
f3f5_4 := int64(f3_2) * int64(f5_2)
|
||||
f3f6_2 := int64(f3_2) * int64(f6)
|
||||
f3f7_76 := int64(f3_2) * int64(f7_38)
|
||||
f3f8_38 := int64(f3_2) * int64(f8_19)
|
||||
f3f9_76 := int64(f3_2) * int64(f9_38)
|
||||
f4f4 := int64(f4) * int64(f4)
|
||||
f4f5_2 := int64(f4_2) * int64(f5)
|
||||
f4f6_38 := int64(f4_2) * int64(f6_19)
|
||||
f4f7_38 := int64(f4) * int64(f7_38)
|
||||
f4f8_38 := int64(f4_2) * int64(f8_19)
|
||||
f4f9_38 := int64(f4) * int64(f9_38)
|
||||
f5f5_38 := int64(f5) * int64(f5_38)
|
||||
f5f6_38 := int64(f5_2) * int64(f6_19)
|
||||
f5f7_76 := int64(f5_2) * int64(f7_38)
|
||||
f5f8_38 := int64(f5_2) * int64(f8_19)
|
||||
f5f9_76 := int64(f5_2) * int64(f9_38)
|
||||
f6f6_19 := int64(f6) * int64(f6_19)
|
||||
f6f7_38 := int64(f6) * int64(f7_38)
|
||||
f6f8_38 := int64(f6_2) * int64(f8_19)
|
||||
f6f9_38 := int64(f6) * int64(f9_38)
|
||||
f7f7_38 := int64(f7) * int64(f7_38)
|
||||
f7f8_38 := int64(f7_2) * int64(f8_19)
|
||||
f7f9_76 := int64(f7_2) * int64(f9_38)
|
||||
f8f8_19 := int64(f8) * int64(f8_19)
|
||||
f8f9_38 := int64(f8) * int64(f9_38)
|
||||
f9f9_38 := int64(f9) * int64(f9_38)
|
||||
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
|
||||
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
|
||||
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
|
||||
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
|
||||
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
|
||||
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
|
||||
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
|
||||
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
|
||||
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
|
||||
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
|
||||
var carry [10]int64
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feMul121666 calculates h = f * 121666. Can overlap h with f.
|
||||
//
|
||||
// Preconditions:
|
||||
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
|
||||
//
|
||||
// Postconditions:
|
||||
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|
||||
func feMul121666(h, f *fieldElement) {
|
||||
h0 := int64(f[0]) * 121666
|
||||
h1 := int64(f[1]) * 121666
|
||||
h2 := int64(f[2]) * 121666
|
||||
h3 := int64(f[3]) * 121666
|
||||
h4 := int64(f[4]) * 121666
|
||||
h5 := int64(f[5]) * 121666
|
||||
h6 := int64(f[6]) * 121666
|
||||
h7 := int64(f[7]) * 121666
|
||||
h8 := int64(f[8]) * 121666
|
||||
h9 := int64(f[9]) * 121666
|
||||
var carry [10]int64
|
||||
|
||||
carry[9] = (h9 + (1 << 24)) >> 25
|
||||
h0 += carry[9] * 19
|
||||
h9 -= carry[9] << 25
|
||||
carry[1] = (h1 + (1 << 24)) >> 25
|
||||
h2 += carry[1]
|
||||
h1 -= carry[1] << 25
|
||||
carry[3] = (h3 + (1 << 24)) >> 25
|
||||
h4 += carry[3]
|
||||
h3 -= carry[3] << 25
|
||||
carry[5] = (h5 + (1 << 24)) >> 25
|
||||
h6 += carry[5]
|
||||
h5 -= carry[5] << 25
|
||||
carry[7] = (h7 + (1 << 24)) >> 25
|
||||
h8 += carry[7]
|
||||
h7 -= carry[7] << 25
|
||||
|
||||
carry[0] = (h0 + (1 << 25)) >> 26
|
||||
h1 += carry[0]
|
||||
h0 -= carry[0] << 26
|
||||
carry[2] = (h2 + (1 << 25)) >> 26
|
||||
h3 += carry[2]
|
||||
h2 -= carry[2] << 26
|
||||
carry[4] = (h4 + (1 << 25)) >> 26
|
||||
h5 += carry[4]
|
||||
h4 -= carry[4] << 26
|
||||
carry[6] = (h6 + (1 << 25)) >> 26
|
||||
h7 += carry[6]
|
||||
h6 -= carry[6] << 26
|
||||
carry[8] = (h8 + (1 << 25)) >> 26
|
||||
h9 += carry[8]
|
||||
h8 -= carry[8] << 26
|
||||
|
||||
h[0] = int32(h0)
|
||||
h[1] = int32(h1)
|
||||
h[2] = int32(h2)
|
||||
h[3] = int32(h3)
|
||||
h[4] = int32(h4)
|
||||
h[5] = int32(h5)
|
||||
h[6] = int32(h6)
|
||||
h[7] = int32(h7)
|
||||
h[8] = int32(h8)
|
||||
h[9] = int32(h9)
|
||||
}
|
||||
|
||||
// feInvert sets out = z^-1.
|
||||
func feInvert(out, z *fieldElement) {
|
||||
var t0, t1, t2, t3 fieldElement
|
||||
var i int
|
||||
|
||||
feSquare(&t0, z)
|
||||
for i = 1; i < 1; i++ {
|
||||
feSquare(&t0, &t0)
|
||||
}
|
||||
feSquare(&t1, &t0)
|
||||
for i = 1; i < 2; i++ {
|
||||
feSquare(&t1, &t1)
|
||||
}
|
||||
feMul(&t1, z, &t1)
|
||||
feMul(&t0, &t0, &t1)
|
||||
feSquare(&t2, &t0)
|
||||
for i = 1; i < 1; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t1, &t2)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 5; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 10; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t2, &t2, &t1)
|
||||
feSquare(&t3, &t2)
|
||||
for i = 1; i < 20; i++ {
|
||||
feSquare(&t3, &t3)
|
||||
}
|
||||
feMul(&t2, &t3, &t2)
|
||||
feSquare(&t2, &t2)
|
||||
for i = 1; i < 10; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t2, &t1)
|
||||
for i = 1; i < 50; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t2, &t2, &t1)
|
||||
feSquare(&t3, &t2)
|
||||
for i = 1; i < 100; i++ {
|
||||
feSquare(&t3, &t3)
|
||||
}
|
||||
feMul(&t2, &t3, &t2)
|
||||
feSquare(&t2, &t2)
|
||||
for i = 1; i < 50; i++ {
|
||||
feSquare(&t2, &t2)
|
||||
}
|
||||
feMul(&t1, &t2, &t1)
|
||||
feSquare(&t1, &t1)
|
||||
for i = 1; i < 5; i++ {
|
||||
feSquare(&t1, &t1)
|
||||
}
|
||||
feMul(out, &t1, &t0)
|
||||
}
|
||||
|
||||
func scalarMult(out, in, base *[32]byte) {
|
||||
var e [32]byte
|
||||
|
||||
copy(e[:], in[:])
|
||||
e[0] &= 248
|
||||
e[31] &= 127
|
||||
e[31] |= 64
|
||||
|
||||
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
|
||||
feFromBytes(&x1, base)
|
||||
feOne(&x2)
|
||||
feCopy(&x3, &x1)
|
||||
feOne(&z3)
|
||||
|
||||
swap := int32(0)
|
||||
for pos := 254; pos >= 0; pos-- {
|
||||
b := e[pos/8] >> uint(pos&7)
|
||||
b &= 1
|
||||
swap ^= int32(b)
|
||||
feCSwap(&x2, &x3, swap)
|
||||
feCSwap(&z2, &z3, swap)
|
||||
swap = int32(b)
|
||||
|
||||
feSub(&tmp0, &x3, &z3)
|
||||
feSub(&tmp1, &x2, &z2)
|
||||
feAdd(&x2, &x2, &z2)
|
||||
feAdd(&z2, &x3, &z3)
|
||||
feMul(&z3, &tmp0, &x2)
|
||||
feMul(&z2, &z2, &tmp1)
|
||||
feSquare(&tmp0, &tmp1)
|
||||
feSquare(&tmp1, &x2)
|
||||
feAdd(&x3, &z3, &z2)
|
||||
feSub(&z2, &z3, &z2)
|
||||
feMul(&x2, &tmp1, &tmp0)
|
||||
feSub(&tmp1, &tmp1, &tmp0)
|
||||
feSquare(&z2, &z2)
|
||||
feMul121666(&z3, &tmp1)
|
||||
feSquare(&x3, &x3)
|
||||
feAdd(&tmp0, &tmp0, &z3)
|
||||
feMul(&z3, &x1, &z2)
|
||||
feMul(&z2, &tmp1, &tmp0)
|
||||
}
|
||||
|
||||
feCSwap(&x2, &x3, swap)
|
||||
feCSwap(&z2, &z3, swap)
|
||||
|
||||
feInvert(&z2, &z2)
|
||||
feMul(&x2, &x2, &z2)
|
||||
feToBytes(out, &x2)
|
||||
}
|
113
vendor/github.com/keybase/go-crypto/curve25519/curve_impl.go
generated
vendored
Normal file
113
vendor/github.com/keybase/go-crypto/curve25519/curve_impl.go
generated
vendored
Normal file
|
@ -0,0 +1,113 @@
|
|||
package curve25519
|
||||
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var cv25519 cv25519Curve
|
||||
|
||||
type cv25519Curve struct {
|
||||
*elliptic.CurveParams
|
||||
}
|
||||
|
||||
func copyReverse(dst []byte, src []byte) {
|
||||
// Curve 25519 multiplication functions expect scalars in reverse
|
||||
// order than PGP. To keep the curve25519Curve type consistent
|
||||
// with other curves, we reverse it here.
|
||||
for i, j := 0, len(src)-1; j >= 0; i, j = i+1, j-1 {
|
||||
dst[i] = src[j]
|
||||
}
|
||||
}
|
||||
|
||||
func (cv25519Curve) ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int) {
|
||||
// Assume y1 is 0 with cv25519.
|
||||
var dst [32]byte
|
||||
var x1Bytes [32]byte
|
||||
var scalarBytes [32]byte
|
||||
|
||||
copy(x1Bytes[:], x1.Bytes()[:32])
|
||||
copyReverse(scalarBytes[:], scalar[:32])
|
||||
|
||||
scalarMult(&dst, &scalarBytes, &x1Bytes)
|
||||
|
||||
x = new(big.Int).SetBytes(dst[:])
|
||||
y = new(big.Int)
|
||||
return x, y
|
||||
}
|
||||
|
||||
func (cv25519Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
|
||||
var dst [32]byte
|
||||
var scalarBytes [32]byte
|
||||
copyReverse(scalarBytes[:], scalar[:32])
|
||||
scalarMult(&dst, &scalarBytes, &basePoint)
|
||||
x = new(big.Int).SetBytes(dst[:])
|
||||
y = new(big.Int)
|
||||
return x, y
|
||||
}
|
||||
|
||||
func (cv25519Curve) IsOnCurve(bigX, bigY *big.Int) bool {
|
||||
return bigY.Sign() == 0 // bigY == 0 ?
|
||||
}
|
||||
|
||||
// More information about 0x40 point format:
|
||||
// https://tools.ietf.org/html/draft-koch-eddsa-for-openpgp-00#section-3
|
||||
// In addition to uncompressed point format described here:
|
||||
// https://tools.ietf.org/html/rfc6637#section-6
|
||||
|
||||
func (cv25519Curve) MarshalType40(x, y *big.Int) []byte {
|
||||
byteLen := 32
|
||||
|
||||
ret := make([]byte, 1+byteLen)
|
||||
ret[0] = 0x40
|
||||
|
||||
xBytes := x.Bytes()
|
||||
copy(ret[1+byteLen-len(xBytes):], xBytes)
|
||||
return ret
|
||||
}
|
||||
|
||||
func (cv25519Curve) UnmarshalType40(data []byte) (x, y *big.Int) {
|
||||
if len(data) != 1+32 {
|
||||
return nil, nil
|
||||
}
|
||||
if data[0] != 0x40 {
|
||||
return nil, nil
|
||||
}
|
||||
x = new(big.Int).SetBytes(data[1:])
|
||||
// Any x is a valid curve point.
|
||||
return x, new(big.Int)
|
||||
}
|
||||
|
||||
// ToCurve25519 casts given elliptic.Curve type to Curve25519 type, or
|
||||
// returns nil, false if cast was unsuccessful.
|
||||
func ToCurve25519(cv elliptic.Curve) (cv25519Curve, bool) {
|
||||
cv2, ok := cv.(cv25519Curve)
|
||||
return cv2, ok
|
||||
}
|
||||
|
||||
func initCv25519() {
|
||||
cv25519.CurveParams = &elliptic.CurveParams{Name: "Curve 25519"}
|
||||
// Some code relies on these parameters being available for
|
||||
// checking Curve coordinate length. They should not be used
|
||||
// directly for any calculations.
|
||||
cv25519.P, _ = new (big.Int).SetString("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", 16)
|
||||
cv25519.N, _ = new (big.Int).SetString("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed", 16)
|
||||
cv25519.Gx, _ = new (big.Int).SetString("9", 16)
|
||||
cv25519.Gy, _ = new (big.Int).SetString("20ae19a1b8a086b4e01edd2c7748d14c923d4d7e6d7c61b229e9c5a27eced3d9", 16)
|
||||
cv25519.BitSize = 256
|
||||
}
|
||||
|
||||
var initonce sync.Once
|
||||
|
||||
// Cv25519 returns a Curve which (partially) implements Cv25519. Only
|
||||
// ScalarMult and ScalarBaseMult are valid for this curve. Add and
|
||||
// Double should not be used.
|
||||
func Cv25519() elliptic.Curve {
|
||||
initonce.Do(initCv25519)
|
||||
return cv25519
|
||||
}
|
||||
|
||||
func (curve cv25519Curve) Params() *elliptic.CurveParams {
|
||||
return curve.CurveParams
|
||||
}
|
23
vendor/github.com/keybase/go-crypto/curve25519/doc.go
generated
vendored
Normal file
23
vendor/github.com/keybase/go-crypto/curve25519/doc.go
generated
vendored
Normal file
|
@ -0,0 +1,23 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package curve25519 provides an implementation of scalar multiplication on
|
||||
// the elliptic curve known as curve25519. See http://cr.yp.to/ecdh.html
|
||||
package curve25519
|
||||
|
||||
// basePoint is the x coordinate of the generator of the curve.
|
||||
var basePoint = [32]byte{9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
|
||||
// ScalarMult sets dst to the product in*base where dst and base are the x
|
||||
// coordinates of group points and all values are in little-endian form.
|
||||
func ScalarMult(dst, in, base *[32]byte) {
|
||||
scalarMult(dst, in, base)
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets dst to the product in*base where dst and base are the x
|
||||
// coordinates of group points, base is the standard generator and all values
|
||||
// are in little-endian form.
|
||||
func ScalarBaseMult(dst, in *[32]byte) {
|
||||
ScalarMult(dst, in, &basePoint)
|
||||
}
|
94
vendor/github.com/keybase/go-crypto/curve25519/freeze_amd64.s
generated
vendored
Normal file
94
vendor/github.com/keybase/go-crypto/curve25519/freeze_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,94 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
// func freeze(inout *[5]uint64)
|
||||
TEXT ·freeze(SB),7,$96-8
|
||||
MOVQ inout+0(FP), DI
|
||||
|
||||
MOVQ SP,R11
|
||||
MOVQ $31,CX
|
||||
NOTQ CX
|
||||
ANDQ CX,SP
|
||||
ADDQ $32,SP
|
||||
|
||||
MOVQ R11,0(SP)
|
||||
MOVQ R12,8(SP)
|
||||
MOVQ R13,16(SP)
|
||||
MOVQ R14,24(SP)
|
||||
MOVQ R15,32(SP)
|
||||
MOVQ BX,40(SP)
|
||||
MOVQ BP,48(SP)
|
||||
MOVQ 0(DI),SI
|
||||
MOVQ 8(DI),DX
|
||||
MOVQ 16(DI),CX
|
||||
MOVQ 24(DI),R8
|
||||
MOVQ 32(DI),R9
|
||||
MOVQ ·REDMASK51(SB),AX
|
||||
MOVQ AX,R10
|
||||
SUBQ $18,R10
|
||||
MOVQ $3,R11
|
||||
REDUCELOOP:
|
||||
MOVQ SI,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,SI
|
||||
ADDQ R12,DX
|
||||
MOVQ DX,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,DX
|
||||
ADDQ R12,CX
|
||||
MOVQ CX,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,CX
|
||||
ADDQ R12,R8
|
||||
MOVQ R8,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,R8
|
||||
ADDQ R12,R9
|
||||
MOVQ R9,R12
|
||||
SHRQ $51,R12
|
||||
ANDQ AX,R9
|
||||
IMUL3Q $19,R12,R12
|
||||
ADDQ R12,SI
|
||||
SUBQ $1,R11
|
||||
JA REDUCELOOP
|
||||
MOVQ $1,R12
|
||||
CMPQ R10,SI
|
||||
CMOVQLT R11,R12
|
||||
CMPQ AX,DX
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,CX
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,R8
|
||||
CMOVQNE R11,R12
|
||||
CMPQ AX,R9
|
||||
CMOVQNE R11,R12
|
||||
NEGQ R12
|
||||
ANDQ R12,AX
|
||||
ANDQ R12,R10
|
||||
SUBQ R10,SI
|
||||
SUBQ AX,DX
|
||||
SUBQ AX,CX
|
||||
SUBQ AX,R8
|
||||
SUBQ AX,R9
|
||||
MOVQ SI,0(DI)
|
||||
MOVQ DX,8(DI)
|
||||
MOVQ CX,16(DI)
|
||||
MOVQ R8,24(DI)
|
||||
MOVQ R9,32(DI)
|
||||
MOVQ 0(SP),R11
|
||||
MOVQ 8(SP),R12
|
||||
MOVQ 16(SP),R13
|
||||
MOVQ 24(SP),R14
|
||||
MOVQ 32(SP),R15
|
||||
MOVQ 40(SP),BX
|
||||
MOVQ 48(SP),BP
|
||||
MOVQ R11,SP
|
||||
MOVQ DI,AX
|
||||
MOVQ SI,DX
|
||||
RET
|
1398
vendor/github.com/keybase/go-crypto/curve25519/ladderstep_amd64.s
generated
vendored
Normal file
1398
vendor/github.com/keybase/go-crypto/curve25519/ladderstep_amd64.s
generated
vendored
Normal file
File diff suppressed because it is too large
Load diff
240
vendor/github.com/keybase/go-crypto/curve25519/mont25519_amd64.go
generated
vendored
Normal file
240
vendor/github.com/keybase/go-crypto/curve25519/mont25519_amd64.go
generated
vendored
Normal file
|
@ -0,0 +1,240 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
package curve25519
|
||||
|
||||
// These functions are implemented in the .s files. The names of the functions
|
||||
// in the rest of the file are also taken from the SUPERCOP sources to help
|
||||
// people following along.
|
||||
|
||||
//go:noescape
|
||||
|
||||
func cswap(inout *[5]uint64, v uint64)
|
||||
|
||||
//go:noescape
|
||||
|
||||
func ladderstep(inout *[5][5]uint64)
|
||||
|
||||
//go:noescape
|
||||
|
||||
func freeze(inout *[5]uint64)
|
||||
|
||||
//go:noescape
|
||||
|
||||
func mul(dest, a, b *[5]uint64)
|
||||
|
||||
//go:noescape
|
||||
|
||||
func square(out, in *[5]uint64)
|
||||
|
||||
// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
|
||||
func mladder(xr, zr *[5]uint64, s *[32]byte) {
|
||||
var work [5][5]uint64
|
||||
|
||||
work[0] = *xr
|
||||
setint(&work[1], 1)
|
||||
setint(&work[2], 0)
|
||||
work[3] = *xr
|
||||
setint(&work[4], 1)
|
||||
|
||||
j := uint(6)
|
||||
var prevbit byte
|
||||
|
||||
for i := 31; i >= 0; i-- {
|
||||
for j < 8 {
|
||||
bit := ((*s)[i] >> j) & 1
|
||||
swap := bit ^ prevbit
|
||||
prevbit = bit
|
||||
cswap(&work[1], uint64(swap))
|
||||
ladderstep(&work)
|
||||
j--
|
||||
}
|
||||
j = 7
|
||||
}
|
||||
|
||||
*xr = work[1]
|
||||
*zr = work[2]
|
||||
}
|
||||
|
||||
func scalarMult(out, in, base *[32]byte) {
|
||||
var e [32]byte
|
||||
copy(e[:], (*in)[:])
|
||||
e[0] &= 248
|
||||
e[31] &= 127
|
||||
e[31] |= 64
|
||||
|
||||
var t, z [5]uint64
|
||||
unpack(&t, base)
|
||||
mladder(&t, &z, &e)
|
||||
invert(&z, &z)
|
||||
mul(&t, &t, &z)
|
||||
pack(out, &t)
|
||||
}
|
||||
|
||||
func setint(r *[5]uint64, v uint64) {
|
||||
r[0] = v
|
||||
r[1] = 0
|
||||
r[2] = 0
|
||||
r[3] = 0
|
||||
r[4] = 0
|
||||
}
|
||||
|
||||
// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
|
||||
// order.
|
||||
func unpack(r *[5]uint64, x *[32]byte) {
|
||||
r[0] = uint64(x[0]) |
|
||||
uint64(x[1])<<8 |
|
||||
uint64(x[2])<<16 |
|
||||
uint64(x[3])<<24 |
|
||||
uint64(x[4])<<32 |
|
||||
uint64(x[5])<<40 |
|
||||
uint64(x[6]&7)<<48
|
||||
|
||||
r[1] = uint64(x[6])>>3 |
|
||||
uint64(x[7])<<5 |
|
||||
uint64(x[8])<<13 |
|
||||
uint64(x[9])<<21 |
|
||||
uint64(x[10])<<29 |
|
||||
uint64(x[11])<<37 |
|
||||
uint64(x[12]&63)<<45
|
||||
|
||||
r[2] = uint64(x[12])>>6 |
|
||||
uint64(x[13])<<2 |
|
||||
uint64(x[14])<<10 |
|
||||
uint64(x[15])<<18 |
|
||||
uint64(x[16])<<26 |
|
||||
uint64(x[17])<<34 |
|
||||
uint64(x[18])<<42 |
|
||||
uint64(x[19]&1)<<50
|
||||
|
||||
r[3] = uint64(x[19])>>1 |
|
||||
uint64(x[20])<<7 |
|
||||
uint64(x[21])<<15 |
|
||||
uint64(x[22])<<23 |
|
||||
uint64(x[23])<<31 |
|
||||
uint64(x[24])<<39 |
|
||||
uint64(x[25]&15)<<47
|
||||
|
||||
r[4] = uint64(x[25])>>4 |
|
||||
uint64(x[26])<<4 |
|
||||
uint64(x[27])<<12 |
|
||||
uint64(x[28])<<20 |
|
||||
uint64(x[29])<<28 |
|
||||
uint64(x[30])<<36 |
|
||||
uint64(x[31]&127)<<44
|
||||
}
|
||||
|
||||
// pack sets out = x where out is the usual, little-endian form of the 5,
|
||||
// 51-bit limbs in x.
|
||||
func pack(out *[32]byte, x *[5]uint64) {
|
||||
t := *x
|
||||
freeze(&t)
|
||||
|
||||
out[0] = byte(t[0])
|
||||
out[1] = byte(t[0] >> 8)
|
||||
out[2] = byte(t[0] >> 16)
|
||||
out[3] = byte(t[0] >> 24)
|
||||
out[4] = byte(t[0] >> 32)
|
||||
out[5] = byte(t[0] >> 40)
|
||||
out[6] = byte(t[0] >> 48)
|
||||
|
||||
out[6] ^= byte(t[1]<<3) & 0xf8
|
||||
out[7] = byte(t[1] >> 5)
|
||||
out[8] = byte(t[1] >> 13)
|
||||
out[9] = byte(t[1] >> 21)
|
||||
out[10] = byte(t[1] >> 29)
|
||||
out[11] = byte(t[1] >> 37)
|
||||
out[12] = byte(t[1] >> 45)
|
||||
|
||||
out[12] ^= byte(t[2]<<6) & 0xc0
|
||||
out[13] = byte(t[2] >> 2)
|
||||
out[14] = byte(t[2] >> 10)
|
||||
out[15] = byte(t[2] >> 18)
|
||||
out[16] = byte(t[2] >> 26)
|
||||
out[17] = byte(t[2] >> 34)
|
||||
out[18] = byte(t[2] >> 42)
|
||||
out[19] = byte(t[2] >> 50)
|
||||
|
||||
out[19] ^= byte(t[3]<<1) & 0xfe
|
||||
out[20] = byte(t[3] >> 7)
|
||||
out[21] = byte(t[3] >> 15)
|
||||
out[22] = byte(t[3] >> 23)
|
||||
out[23] = byte(t[3] >> 31)
|
||||
out[24] = byte(t[3] >> 39)
|
||||
out[25] = byte(t[3] >> 47)
|
||||
|
||||
out[25] ^= byte(t[4]<<4) & 0xf0
|
||||
out[26] = byte(t[4] >> 4)
|
||||
out[27] = byte(t[4] >> 12)
|
||||
out[28] = byte(t[4] >> 20)
|
||||
out[29] = byte(t[4] >> 28)
|
||||
out[30] = byte(t[4] >> 36)
|
||||
out[31] = byte(t[4] >> 44)
|
||||
}
|
||||
|
||||
// invert calculates r = x^-1 mod p using Fermat's little theorem.
|
||||
func invert(r *[5]uint64, x *[5]uint64) {
|
||||
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
|
||||
|
||||
square(&z2, x) /* 2 */
|
||||
square(&t, &z2) /* 4 */
|
||||
square(&t, &t) /* 8 */
|
||||
mul(&z9, &t, x) /* 9 */
|
||||
mul(&z11, &z9, &z2) /* 11 */
|
||||
square(&t, &z11) /* 22 */
|
||||
mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
|
||||
|
||||
square(&t, &z2_5_0) /* 2^6 - 2^1 */
|
||||
for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
|
||||
|
||||
square(&t, &z2_10_0) /* 2^11 - 2^1 */
|
||||
for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
|
||||
|
||||
square(&t, &z2_20_0) /* 2^21 - 2^1 */
|
||||
for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
|
||||
|
||||
square(&t, &t) /* 2^41 - 2^1 */
|
||||
for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
|
||||
|
||||
square(&t, &z2_50_0) /* 2^51 - 2^1 */
|
||||
for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
|
||||
|
||||
square(&t, &z2_100_0) /* 2^101 - 2^1 */
|
||||
for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
|
||||
|
||||
square(&t, &t) /* 2^201 - 2^1 */
|
||||
for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
|
||||
square(&t, &t)
|
||||
}
|
||||
mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
|
||||
|
||||
square(&t, &t) /* 2^251 - 2^1 */
|
||||
square(&t, &t) /* 2^252 - 2^2 */
|
||||
square(&t, &t) /* 2^253 - 2^3 */
|
||||
|
||||
square(&t, &t) /* 2^254 - 2^4 */
|
||||
|
||||
square(&t, &t) /* 2^255 - 2^5 */
|
||||
mul(r, &t, &z11) /* 2^255 - 21 */
|
||||
}
|
191
vendor/github.com/keybase/go-crypto/curve25519/mul_amd64.s
generated
vendored
Normal file
191
vendor/github.com/keybase/go-crypto/curve25519/mul_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,191 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
// func mul(dest, a, b *[5]uint64)
|
||||
TEXT ·mul(SB),0,$128-24
|
||||
MOVQ dest+0(FP), DI
|
||||
MOVQ a+8(FP), SI
|
||||
MOVQ b+16(FP), DX
|
||||
|
||||
MOVQ SP,R11
|
||||
MOVQ $31,CX
|
||||
NOTQ CX
|
||||
ANDQ CX,SP
|
||||
ADDQ $32,SP
|
||||
|
||||
MOVQ R11,0(SP)
|
||||
MOVQ R12,8(SP)
|
||||
MOVQ R13,16(SP)
|
||||
MOVQ R14,24(SP)
|
||||
MOVQ R15,32(SP)
|
||||
MOVQ BX,40(SP)
|
||||
MOVQ BP,48(SP)
|
||||
MOVQ DI,56(SP)
|
||||
MOVQ DX,CX
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MOVQ AX,64(SP)
|
||||
MULQ 16(CX)
|
||||
MOVQ AX,R8
|
||||
MOVQ DX,R9
|
||||
MOVQ 32(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MOVQ AX,72(SP)
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 8(CX)
|
||||
MOVQ AX,R10
|
||||
MOVQ DX,R11
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 16(CX)
|
||||
MOVQ AX,R12
|
||||
MOVQ DX,R13
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 24(CX)
|
||||
MOVQ AX,R14
|
||||
MOVQ DX,R15
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 32(CX)
|
||||
MOVQ AX,BX
|
||||
MOVQ DX,BP
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 8(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R8
|
||||
ADCQ DX,R9
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 24(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ 24(SI),AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 64(SP),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 64(SP),AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 32(SI),AX
|
||||
MULQ 0(CX)
|
||||
ADDQ AX,BX
|
||||
ADCQ DX,BP
|
||||
MOVQ 72(SP),AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX,R10
|
||||
ADCQ DX,R11
|
||||
MOVQ 72(SP),AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX,R12
|
||||
ADCQ DX,R13
|
||||
MOVQ 72(SP),AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX,R14
|
||||
ADCQ DX,R15
|
||||
MOVQ ·REDMASK51(SB),SI
|
||||
SHLQ $13,R9:R8
|
||||
ANDQ SI,R8
|
||||
SHLQ $13,R11:R10
|
||||
ANDQ SI,R10
|
||||
ADDQ R9,R10
|
||||
SHLQ $13,R13:R12
|
||||
ANDQ SI,R12
|
||||
ADDQ R11,R12
|
||||
SHLQ $13,R15:R14
|
||||
ANDQ SI,R14
|
||||
ADDQ R13,R14
|
||||
SHLQ $13,BP:BX
|
||||
ANDQ SI,BX
|
||||
ADDQ R15,BX
|
||||
IMUL3Q $19,BP,DX
|
||||
ADDQ DX,R8
|
||||
MOVQ R8,DX
|
||||
SHRQ $51,DX
|
||||
ADDQ R10,DX
|
||||
MOVQ DX,CX
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,R8
|
||||
ADDQ R12,DX
|
||||
MOVQ DX,R9
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,CX
|
||||
ADDQ R14,DX
|
||||
MOVQ DX,AX
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,R9
|
||||
ADDQ BX,DX
|
||||
MOVQ DX,R10
|
||||
SHRQ $51,DX
|
||||
ANDQ SI,AX
|
||||
IMUL3Q $19,DX,DX
|
||||
ADDQ DX,R8
|
||||
ANDQ SI,R10
|
||||
MOVQ R8,0(DI)
|
||||
MOVQ CX,8(DI)
|
||||
MOVQ R9,16(DI)
|
||||
MOVQ AX,24(DI)
|
||||
MOVQ R10,32(DI)
|
||||
MOVQ 0(SP),R11
|
||||
MOVQ 8(SP),R12
|
||||
MOVQ 16(SP),R13
|
||||
MOVQ 24(SP),R14
|
||||
MOVQ 32(SP),R15
|
||||
MOVQ 40(SP),BX
|
||||
MOVQ 48(SP),BP
|
||||
MOVQ R11,SP
|
||||
MOVQ DI,AX
|
||||
MOVQ SI,DX
|
||||
RET
|
153
vendor/github.com/keybase/go-crypto/curve25519/square_amd64.s
generated
vendored
Normal file
153
vendor/github.com/keybase/go-crypto/curve25519/square_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,153 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
|
||||
|
||||
// +build amd64,!gccgo,!appengine
|
||||
|
||||
// func square(out, in *[5]uint64)
|
||||
TEXT ·square(SB),7,$96-16
|
||||
MOVQ out+0(FP), DI
|
||||
MOVQ in+8(FP), SI
|
||||
|
||||
MOVQ SP,R11
|
||||
MOVQ $31,CX
|
||||
NOTQ CX
|
||||
ANDQ CX,SP
|
||||
ADDQ $32, SP
|
||||
|
||||
MOVQ R11,0(SP)
|
||||
MOVQ R12,8(SP)
|
||||
MOVQ R13,16(SP)
|
||||
MOVQ R14,24(SP)
|
||||
MOVQ R15,32(SP)
|
||||
MOVQ BX,40(SP)
|
||||
MOVQ BP,48(SP)
|
||||
MOVQ 0(SI),AX
|
||||
MULQ 0(SI)
|
||||
MOVQ AX,CX
|
||||
MOVQ DX,R8
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 8(SI)
|
||||
MOVQ AX,R9
|
||||
MOVQ DX,R10
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 16(SI)
|
||||
MOVQ AX,R11
|
||||
MOVQ DX,R12
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 24(SI)
|
||||
MOVQ AX,R13
|
||||
MOVQ DX,R14
|
||||
MOVQ 0(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 32(SI)
|
||||
MOVQ AX,R15
|
||||
MOVQ DX,BX
|
||||
MOVQ 8(SI),AX
|
||||
MULQ 8(SI)
|
||||
ADDQ AX,R11
|
||||
ADCQ DX,R12
|
||||
MOVQ 8(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 16(SI)
|
||||
ADDQ AX,R13
|
||||
ADCQ DX,R14
|
||||
MOVQ 8(SI),AX
|
||||
SHLQ $1,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,R15
|
||||
ADCQ DX,BX
|
||||
MOVQ 8(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,CX
|
||||
ADCQ DX,R8
|
||||
MOVQ 16(SI),AX
|
||||
MULQ 16(SI)
|
||||
ADDQ AX,R15
|
||||
ADCQ DX,BX
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,CX
|
||||
ADCQ DX,R8
|
||||
MOVQ 16(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R9
|
||||
ADCQ DX,R10
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 24(SI)
|
||||
ADDQ AX,R9
|
||||
ADCQ DX,R10
|
||||
MOVQ 24(SI),DX
|
||||
IMUL3Q $38,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R11
|
||||
ADCQ DX,R12
|
||||
MOVQ 32(SI),DX
|
||||
IMUL3Q $19,DX,AX
|
||||
MULQ 32(SI)
|
||||
ADDQ AX,R13
|
||||
ADCQ DX,R14
|
||||
MOVQ ·REDMASK51(SB),SI
|
||||
SHLQ $13,R8:CX
|
||||
ANDQ SI,CX
|
||||
SHLQ $13,R10:R9
|
||||
ANDQ SI,R9
|
||||
ADDQ R8,R9
|
||||
SHLQ $13,R12:R11
|
||||
ANDQ SI,R11
|
||||
ADDQ R10,R11
|
||||
SHLQ $13,R14:R13
|
||||
ANDQ SI,R13
|
||||
ADDQ R12,R13
|
||||
SHLQ $13,BX:R15
|
||||
ANDQ SI,R15
|
||||
ADDQ R14,R15
|
||||
IMUL3Q $19,BX,DX
|
||||
ADDQ DX,CX
|
||||
MOVQ CX,DX
|
||||
SHRQ $51,DX
|
||||
ADDQ R9,DX
|
||||
ANDQ SI,CX
|
||||
MOVQ DX,R8
|
||||
SHRQ $51,DX
|
||||
ADDQ R11,DX
|
||||
ANDQ SI,R8
|
||||
MOVQ DX,R9
|
||||
SHRQ $51,DX
|
||||
ADDQ R13,DX
|
||||
ANDQ SI,R9
|
||||
MOVQ DX,AX
|
||||
SHRQ $51,DX
|
||||
ADDQ R15,DX
|
||||
ANDQ SI,AX
|
||||
MOVQ DX,R10
|
||||
SHRQ $51,DX
|
||||
IMUL3Q $19,DX,DX
|
||||
ADDQ DX,CX
|
||||
ANDQ SI,R10
|
||||
MOVQ CX,0(DI)
|
||||
MOVQ R8,8(DI)
|
||||
MOVQ R9,16(DI)
|
||||
MOVQ AX,24(DI)
|
||||
MOVQ R10,32(DI)
|
||||
MOVQ 0(SP),R11
|
||||
MOVQ 8(SP),R12
|
||||
MOVQ 16(SP),R13
|
||||
MOVQ 24(SP),R14
|
||||
MOVQ 32(SP),R15
|
||||
MOVQ 40(SP),BX
|
||||
MOVQ 48(SP),BP
|
||||
MOVQ R11,SP
|
||||
MOVQ DI,AX
|
||||
MOVQ SI,DX
|
||||
RET
|
181
vendor/github.com/keybase/go-crypto/ed25519/ed25519.go
generated
vendored
Normal file
181
vendor/github.com/keybase/go-crypto/ed25519/ed25519.go
generated
vendored
Normal file
|
@ -0,0 +1,181 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package ed25519 implements the Ed25519 signature algorithm. See
|
||||
// http://ed25519.cr.yp.to/.
|
||||
//
|
||||
// These functions are also compatible with the “Ed25519” function defined in
|
||||
// https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05.
|
||||
package ed25519
|
||||
|
||||
// This code is a port of the public domain, “ref10” implementation of ed25519
|
||||
// from SUPERCOP.
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
cryptorand "crypto/rand"
|
||||
"crypto/sha512"
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"io"
|
||||
"strconv"
|
||||
|
||||
"github.com/keybase/go-crypto/ed25519/internal/edwards25519"
|
||||
)
|
||||
|
||||
const (
|
||||
// PublicKeySize is the size, in bytes, of public keys as used in this package.
|
||||
PublicKeySize = 32
|
||||
// PrivateKeySize is the size, in bytes, of private keys as used in this package.
|
||||
PrivateKeySize = 64
|
||||
// SignatureSize is the size, in bytes, of signatures generated and verified by this package.
|
||||
SignatureSize = 64
|
||||
)
|
||||
|
||||
// PublicKey is the type of Ed25519 public keys.
|
||||
type PublicKey []byte
|
||||
|
||||
// PrivateKey is the type of Ed25519 private keys. It implements crypto.Signer.
|
||||
type PrivateKey []byte
|
||||
|
||||
// Public returns the PublicKey corresponding to priv.
|
||||
func (priv PrivateKey) Public() crypto.PublicKey {
|
||||
publicKey := make([]byte, PublicKeySize)
|
||||
copy(publicKey, priv[32:])
|
||||
return PublicKey(publicKey)
|
||||
}
|
||||
|
||||
// Sign signs the given message with priv.
|
||||
// Ed25519 performs two passes over messages to be signed and therefore cannot
|
||||
// handle pre-hashed messages. Thus opts.HashFunc() must return zero to
|
||||
// indicate the message hasn't been hashed. This can be achieved by passing
|
||||
// crypto.Hash(0) as the value for opts.
|
||||
func (priv PrivateKey) Sign(rand io.Reader, message []byte, opts crypto.SignerOpts) (signature []byte, err error) {
|
||||
if opts.HashFunc() != crypto.Hash(0) {
|
||||
return nil, errors.New("ed25519: cannot sign hashed message")
|
||||
}
|
||||
|
||||
return Sign(priv, message), nil
|
||||
}
|
||||
|
||||
// GenerateKey generates a public/private key pair using entropy from rand.
|
||||
// If rand is nil, crypto/rand.Reader will be used.
|
||||
func GenerateKey(rand io.Reader) (publicKey PublicKey, privateKey PrivateKey, err error) {
|
||||
if rand == nil {
|
||||
rand = cryptorand.Reader
|
||||
}
|
||||
|
||||
privateKey = make([]byte, PrivateKeySize)
|
||||
publicKey = make([]byte, PublicKeySize)
|
||||
_, err = io.ReadFull(rand, privateKey[:32])
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
digest := sha512.Sum512(privateKey[:32])
|
||||
digest[0] &= 248
|
||||
digest[31] &= 127
|
||||
digest[31] |= 64
|
||||
|
||||
var A edwards25519.ExtendedGroupElement
|
||||
var hBytes [32]byte
|
||||
copy(hBytes[:], digest[:])
|
||||
edwards25519.GeScalarMultBase(&A, &hBytes)
|
||||
var publicKeyBytes [32]byte
|
||||
A.ToBytes(&publicKeyBytes)
|
||||
|
||||
copy(privateKey[32:], publicKeyBytes[:])
|
||||
copy(publicKey, publicKeyBytes[:])
|
||||
|
||||
return publicKey, privateKey, nil
|
||||
}
|
||||
|
||||
// Sign signs the message with privateKey and returns a signature. It will
|
||||
// panic if len(privateKey) is not PrivateKeySize.
|
||||
func Sign(privateKey PrivateKey, message []byte) []byte {
|
||||
if l := len(privateKey); l != PrivateKeySize {
|
||||
panic("ed25519: bad private key length: " + strconv.Itoa(l))
|
||||
}
|
||||
|
||||
h := sha512.New()
|
||||
h.Write(privateKey[:32])
|
||||
|
||||
var digest1, messageDigest, hramDigest [64]byte
|
||||
var expandedSecretKey [32]byte
|
||||
h.Sum(digest1[:0])
|
||||
copy(expandedSecretKey[:], digest1[:])
|
||||
expandedSecretKey[0] &= 248
|
||||
expandedSecretKey[31] &= 63
|
||||
expandedSecretKey[31] |= 64
|
||||
|
||||
h.Reset()
|
||||
h.Write(digest1[32:])
|
||||
h.Write(message)
|
||||
h.Sum(messageDigest[:0])
|
||||
|
||||
var messageDigestReduced [32]byte
|
||||
edwards25519.ScReduce(&messageDigestReduced, &messageDigest)
|
||||
var R edwards25519.ExtendedGroupElement
|
||||
edwards25519.GeScalarMultBase(&R, &messageDigestReduced)
|
||||
|
||||
var encodedR [32]byte
|
||||
R.ToBytes(&encodedR)
|
||||
|
||||
h.Reset()
|
||||
h.Write(encodedR[:])
|
||||
h.Write(privateKey[32:])
|
||||
h.Write(message)
|
||||
h.Sum(hramDigest[:0])
|
||||
var hramDigestReduced [32]byte
|
||||
edwards25519.ScReduce(&hramDigestReduced, &hramDigest)
|
||||
|
||||
var s [32]byte
|
||||
edwards25519.ScMulAdd(&s, &hramDigestReduced, &expandedSecretKey, &messageDigestReduced)
|
||||
|
||||
signature := make([]byte, SignatureSize)
|
||||
copy(signature[:], encodedR[:])
|
||||
copy(signature[32:], s[:])
|
||||
|
||||
return signature
|
||||
}
|
||||
|
||||
// Verify reports whether sig is a valid signature of message by publicKey. It
|
||||
// will panic if len(publicKey) is not PublicKeySize.
|
||||
func Verify(publicKey PublicKey, message, sig []byte) bool {
|
||||
if l := len(publicKey); l != PublicKeySize {
|
||||
panic("ed25519: bad public key length: " + strconv.Itoa(l))
|
||||
}
|
||||
|
||||
if len(sig) != SignatureSize || sig[63]&224 != 0 {
|
||||
return false
|
||||
}
|
||||
|
||||
var A edwards25519.ExtendedGroupElement
|
||||
var publicKeyBytes [32]byte
|
||||
copy(publicKeyBytes[:], publicKey)
|
||||
if !A.FromBytes(&publicKeyBytes) {
|
||||
return false
|
||||
}
|
||||
edwards25519.FeNeg(&A.X, &A.X)
|
||||
edwards25519.FeNeg(&A.T, &A.T)
|
||||
|
||||
h := sha512.New()
|
||||
h.Write(sig[:32])
|
||||
h.Write(publicKey[:])
|
||||
h.Write(message)
|
||||
var digest [64]byte
|
||||
h.Sum(digest[:0])
|
||||
|
||||
var hReduced [32]byte
|
||||
edwards25519.ScReduce(&hReduced, &digest)
|
||||
|
||||
var R edwards25519.ProjectiveGroupElement
|
||||
var b [32]byte
|
||||
copy(b[:], sig[32:])
|
||||
edwards25519.GeDoubleScalarMultVartime(&R, &hReduced, &A, &b)
|
||||
|
||||
var checkR [32]byte
|
||||
R.ToBytes(&checkR)
|
||||
return subtle.ConstantTimeCompare(sig[:32], checkR[:]) == 1
|
||||
}
|
1422
vendor/github.com/keybase/go-crypto/ed25519/internal/edwards25519/const.go
generated
vendored
Normal file
1422
vendor/github.com/keybase/go-crypto/ed25519/internal/edwards25519/const.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load diff
1771
vendor/github.com/keybase/go-crypto/ed25519/internal/edwards25519/edwards25519.go
generated
vendored
Normal file
1771
vendor/github.com/keybase/go-crypto/ed25519/internal/edwards25519/edwards25519.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load diff
|
@ -4,14 +4,17 @@
|
|||
|
||||
// Package armor implements OpenPGP ASCII Armor, see RFC 4880. OpenPGP Armor is
|
||||
// very similar to PEM except that it has an additional CRC checksum.
|
||||
package armor // import "golang.org/x/crypto/openpgp/armor"
|
||||
package armor // import "github.com/keybase/go-crypto/openpgp/armor"
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"io"
|
||||
"strings"
|
||||
"unicode"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// A Block represents an OpenPGP armored structure.
|
||||
|
@ -65,7 +68,14 @@ type lineReader struct {
|
|||
in *bufio.Reader
|
||||
buf []byte
|
||||
eof bool
|
||||
crc uint32
|
||||
crc *uint32
|
||||
}
|
||||
|
||||
// ourIsSpace checks if a rune is either space according to unicode
|
||||
// package, or ZeroWidthSpace (which is not a space according to
|
||||
// unicode module). Used to trim lines during header reading.
|
||||
func ourIsSpace(r rune) bool {
|
||||
return r == '\u200b' || unicode.IsSpace(r)
|
||||
}
|
||||
|
||||
func (l *lineReader) Read(p []byte) (n int, err error) {
|
||||
|
@ -79,13 +89,12 @@ func (l *lineReader) Read(p []byte) (n int, err error) {
|
|||
return
|
||||
}
|
||||
|
||||
line, isPrefix, err := l.in.ReadLine()
|
||||
line, _, err := l.in.ReadLine()
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
if isPrefix {
|
||||
return 0, ArmorCorrupt
|
||||
}
|
||||
|
||||
line = bytes.TrimFunc(line, ourIsSpace)
|
||||
|
||||
if len(line) == 5 && line[0] == '=' {
|
||||
// This is the checksum line
|
||||
|
@ -95,13 +104,19 @@ func (l *lineReader) Read(p []byte) (n int, err error) {
|
|||
if m != 3 || err != nil {
|
||||
return
|
||||
}
|
||||
l.crc = uint32(expectedBytes[0])<<16 |
|
||||
crc := uint32(expectedBytes[0])<<16 |
|
||||
uint32(expectedBytes[1])<<8 |
|
||||
uint32(expectedBytes[2])
|
||||
l.crc = &crc
|
||||
|
||||
line, _, err = l.in.ReadLine()
|
||||
if err != nil && err != io.EOF {
|
||||
return
|
||||
for {
|
||||
line, _, err = l.in.ReadLine()
|
||||
if err != nil && err != io.EOF {
|
||||
return
|
||||
}
|
||||
if len(strings.TrimSpace(string(line))) > 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
if !bytes.HasPrefix(line, armorEnd) {
|
||||
return 0, ArmorCorrupt
|
||||
|
@ -111,8 +126,11 @@ func (l *lineReader) Read(p []byte) (n int, err error) {
|
|||
return 0, io.EOF
|
||||
}
|
||||
|
||||
if len(line) > 96 {
|
||||
return 0, ArmorCorrupt
|
||||
if bytes.HasPrefix(line, armorEnd) {
|
||||
// Unexpected ending, there was no checksum.
|
||||
l.eof = true
|
||||
l.crc = nil
|
||||
return 0, io.EOF
|
||||
}
|
||||
|
||||
n = copy(p, line)
|
||||
|
@ -142,7 +160,7 @@ func (r *openpgpReader) Read(p []byte) (n int, err error) {
|
|||
r.currentCRC = crc24(r.currentCRC, p[:n])
|
||||
|
||||
if err == io.EOF {
|
||||
if r.lReader.crc != uint32(r.currentCRC&crc24Mask) {
|
||||
if r.lReader.crc != nil && *r.lReader.crc != uint32(r.currentCRC&crc24Mask) {
|
||||
return 0, ArmorCorrupt
|
||||
}
|
||||
}
|
||||
|
@ -196,7 +214,7 @@ TryNextBlock:
|
|||
p.Header[lastKey] += string(line)
|
||||
continue
|
||||
}
|
||||
line = bytes.TrimSpace(line)
|
||||
line = bytes.TrimFunc(line, ourIsSpace)
|
||||
if len(line) == 0 {
|
||||
break
|
||||
}
|
|
@ -125,7 +125,7 @@ func (e *encoding) Close() (err error) {
|
|||
var b64ChecksumBytes [4]byte
|
||||
base64.StdEncoding.Encode(b64ChecksumBytes[:], checksumBytes[:])
|
||||
|
||||
return writeSlices(e.out, blockEnd, b64ChecksumBytes[:], newline, armorEnd, e.blockType, armorEndOfLine)
|
||||
return writeSlices(e.out, blockEnd, b64ChecksumBytes[:], newline, armorEnd, e.blockType, armorEndOfLine, []byte{'\n'})
|
||||
}
|
||||
|
||||
// Encode returns a WriteCloser which will encode the data written to it in
|
282
vendor/github.com/keybase/go-crypto/openpgp/ecdh/ecdh.go
generated
vendored
Normal file
282
vendor/github.com/keybase/go-crypto/openpgp/ecdh/ecdh.go
generated
vendored
Normal file
|
@ -0,0 +1,282 @@
|
|||
package ecdh
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"crypto/aes"
|
||||
"crypto/elliptic"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"github.com/keybase/go-crypto/curve25519"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
type PublicKey struct {
|
||||
elliptic.Curve
|
||||
X, Y *big.Int
|
||||
}
|
||||
|
||||
type PrivateKey struct {
|
||||
PublicKey
|
||||
X *big.Int
|
||||
}
|
||||
|
||||
// KDF implements Key Derivation Function as described in
|
||||
// https://tools.ietf.org/html/rfc6637#section-7
|
||||
func (e *PublicKey) KDF(S []byte, kdfParams []byte, hash crypto.Hash) []byte {
|
||||
sLen := (e.Curve.Params().P.BitLen() + 7) / 8
|
||||
buf := new(bytes.Buffer)
|
||||
buf.Write([]byte{0, 0, 0, 1})
|
||||
if sLen > len(S) {
|
||||
// zero-pad the S. If we got invalid S (bigger than curve's
|
||||
// P), we are going to produce invalid key. Garbage in,
|
||||
// garbage out.
|
||||
buf.Write(make([]byte, sLen-len(S)))
|
||||
}
|
||||
buf.Write(S)
|
||||
buf.Write(kdfParams)
|
||||
|
||||
hashw := hash.New()
|
||||
|
||||
hashw.Write(buf.Bytes())
|
||||
key := hashw.Sum(nil)
|
||||
|
||||
return key
|
||||
}
|
||||
|
||||
// AESKeyUnwrap implements RFC 3394 Key Unwrapping. See
|
||||
// http://tools.ietf.org/html/rfc3394#section-2.2.1
|
||||
// Note: The second described algorithm ("index-based") is implemented
|
||||
// here.
|
||||
func AESKeyUnwrap(key, cipherText []byte) ([]byte, error) {
|
||||
if len(cipherText)%8 != 0 {
|
||||
return nil, errors.New("cipherText must by a multiple of 64 bits")
|
||||
}
|
||||
|
||||
cipher, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
nblocks := len(cipherText)/8 - 1
|
||||
|
||||
// 1) Initialize variables.
|
||||
// - Set A = C[0]
|
||||
var A [aes.BlockSize]byte
|
||||
copy(A[:8], cipherText[:8])
|
||||
|
||||
// For i = 1 to n
|
||||
// Set R[i] = C[i]
|
||||
R := make([]byte, len(cipherText)-8)
|
||||
copy(R, cipherText[8:])
|
||||
|
||||
// 2) Compute intermediate values.
|
||||
for j := 5; j >= 0; j-- {
|
||||
for i := nblocks - 1; i >= 0; i-- {
|
||||
// B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
|
||||
// A = MSB(64, B)
|
||||
t := uint64(nblocks*j + i + 1)
|
||||
At := binary.BigEndian.Uint64(A[:8]) ^ t
|
||||
binary.BigEndian.PutUint64(A[:8], At)
|
||||
|
||||
copy(A[8:], R[i*8:i*8+8])
|
||||
cipher.Decrypt(A[:], A[:])
|
||||
|
||||
// R[i] = LSB(B, 64)
|
||||
copy(R[i*8:i*8+8], A[8:])
|
||||
}
|
||||
}
|
||||
|
||||
// 3) Output results.
|
||||
// If A is an appropriate initial value (see 2.2.3),
|
||||
for i := 0; i < 8; i++ {
|
||||
if A[i] != 0xA6 {
|
||||
return nil, errors.New("Failed to unwrap key (A is not IV)")
|
||||
}
|
||||
}
|
||||
|
||||
return R, nil
|
||||
}
|
||||
|
||||
// AESKeyWrap implements RFC 3394 Key Wrapping. See
|
||||
// https://tools.ietf.org/html/rfc3394#section-2.2.2
|
||||
// Note: The second described algorithm ("index-based") is implemented
|
||||
// here.
|
||||
func AESKeyWrap(key, plainText []byte) ([]byte, error) {
|
||||
if len(plainText)%8 != 0 {
|
||||
return nil, errors.New("plainText must be a multiple of 64 bits")
|
||||
}
|
||||
|
||||
cipher, err := aes.NewCipher(key) // NewCipher checks key size
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
nblocks := len(plainText) / 8
|
||||
|
||||
// 1) Initialize variables.
|
||||
var A [aes.BlockSize]byte
|
||||
// Section 2.2.3.1 -- Initial Value
|
||||
// http://tools.ietf.org/html/rfc3394#section-2.2.3.1
|
||||
for i := 0; i < 8; i++ {
|
||||
A[i] = 0xA6
|
||||
}
|
||||
|
||||
// For i = 1 to n
|
||||
// Set R[i] = P[i]
|
||||
R := make([]byte, len(plainText))
|
||||
copy(R, plainText)
|
||||
|
||||
// 2) Calculate intermediate values.
|
||||
for j := 0; j <= 5; j++ {
|
||||
for i := 0; i < nblocks; i++ {
|
||||
// B = AES(K, A | R[i])
|
||||
copy(A[8:], R[i*8:i*8+8])
|
||||
cipher.Encrypt(A[:], A[:])
|
||||
|
||||
// (Assume B = A)
|
||||
// A = MSB(64, B) ^ t where t = (n*j)+1
|
||||
t := uint64(j*nblocks + i + 1)
|
||||
At := binary.BigEndian.Uint64(A[:8]) ^ t
|
||||
binary.BigEndian.PutUint64(A[:8], At)
|
||||
|
||||
// R[i] = LSB(64, B)
|
||||
copy(R[i*8:i*8+8], A[8:])
|
||||
}
|
||||
}
|
||||
|
||||
// 3) Output results.
|
||||
// Set C[0] = A
|
||||
// For i = 1 to n
|
||||
// C[i] = R[i]
|
||||
return append(A[:8], R...), nil
|
||||
}
|
||||
|
||||
// PadBuffer pads byte buffer buf to a length being multiple of
|
||||
// blockLen. Additional bytes appended to the buffer have value of the
|
||||
// number padded bytes. E.g. if the buffer is 3 bytes short of being
|
||||
// 40 bytes total, the appended bytes will be [03, 03, 03].
|
||||
func PadBuffer(buf []byte, blockLen int) []byte {
|
||||
padding := blockLen - (len(buf) % blockLen)
|
||||
if padding == 0 {
|
||||
return buf
|
||||
}
|
||||
|
||||
padBuf := make([]byte, padding)
|
||||
for i := 0; i < padding; i++ {
|
||||
padBuf[i] = byte(padding)
|
||||
}
|
||||
|
||||
return append(buf, padBuf...)
|
||||
}
|
||||
|
||||
// UnpadBuffer verifies that buffer contains proper padding and
|
||||
// returns buffer without the padding, or nil if the padding was
|
||||
// invalid.
|
||||
func UnpadBuffer(buf []byte, dataLen int) []byte {
|
||||
padding := len(buf) - dataLen
|
||||
outBuf := buf[:dataLen]
|
||||
|
||||
for i := dataLen; i < len(buf); i++ {
|
||||
if buf[i] != byte(padding) {
|
||||
// Invalid padding - bail out
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
return outBuf
|
||||
}
|
||||
|
||||
func (e *PublicKey) Encrypt(random io.Reader, kdfParams []byte, plain []byte, hash crypto.Hash, kdfKeySize int) (Vx *big.Int, Vy *big.Int, C []byte, err error) {
|
||||
// Vx, Vy - encryption key
|
||||
|
||||
// Note for Curve 25519 - curve25519 library already does key
|
||||
// clamping in scalarMult, so we can use generic random scalar
|
||||
// generation from elliptic.
|
||||
priv, Vx, Vy, err := elliptic.GenerateKey(e.Curve, random)
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
|
||||
// Sx, Sy - shared secret
|
||||
Sx, _ := e.Curve.ScalarMult(e.X, e.Y, priv)
|
||||
|
||||
// Encrypt the payload with KDF-ed S as the encryption key. Pass
|
||||
// the ciphertext along with V to the recipient. Recipient can
|
||||
// generate S using V and their priv key, and then KDF(S), on
|
||||
// their own, to get encryption key and decrypt the ciphertext,
|
||||
// revealing encryption key for symmetric encryption later.
|
||||
|
||||
plain = PadBuffer(plain, 8)
|
||||
key := e.KDF(Sx.Bytes(), kdfParams, hash)
|
||||
|
||||
// Take only as many bytes from key as the key length (the hash
|
||||
// result might be bigger)
|
||||
encrypted, err := AESKeyWrap(key[:kdfKeySize], plain)
|
||||
|
||||
return Vx, Vy, encrypted, nil
|
||||
}
|
||||
|
||||
func (e *PrivateKey) DecryptShared(X, Y *big.Int) []byte {
|
||||
Sx, _ := e.Curve.ScalarMult(X, Y, e.X.Bytes())
|
||||
return Sx.Bytes()
|
||||
}
|
||||
|
||||
func countBits(buffer []byte) int {
|
||||
var headerLen int
|
||||
switch buffer[0] {
|
||||
case 0x4:
|
||||
headerLen = 3
|
||||
case 0x40:
|
||||
headerLen = 7
|
||||
default:
|
||||
// Unexpected header - but we can still count the bits.
|
||||
val := buffer[0]
|
||||
headerLen = 0
|
||||
for val > 0 {
|
||||
val = val / 2
|
||||
headerLen++
|
||||
}
|
||||
}
|
||||
|
||||
return headerLen + (len(buffer)-1)*8
|
||||
}
|
||||
|
||||
// elliptic.Marshal and elliptic.Unmarshal only marshals uncompressed
|
||||
// 0x4 MPI types. These functions will check if the curve is cv25519,
|
||||
// and if so, use 0x40 compressed type to (un)marshal. Otherwise,
|
||||
// elliptic.(Un)marshal will be called.
|
||||
|
||||
// Marshal encodes point into either 0x4 uncompressed point form, or
|
||||
// 0x40 compressed point for Curve 25519.
|
||||
func Marshal(curve elliptic.Curve, x, y *big.Int) (buf []byte, bitSize int) {
|
||||
// NOTE: Read more about MPI encoding in the RFC:
|
||||
// https://tools.ietf.org/html/rfc4880#section-3.2
|
||||
|
||||
// We are required to encode size in bits, counting from the most-
|
||||
// significant non-zero bit. So assuming that the buffer never
|
||||
// starts with 0x00, we only need to count bits in the first byte
|
||||
// - and in current implentation it will always be 0x4 or 0x40.
|
||||
|
||||
cv, ok := curve25519.ToCurve25519(curve)
|
||||
if ok {
|
||||
buf = cv.MarshalType40(x, y)
|
||||
} else {
|
||||
buf = elliptic.Marshal(curve, x, y)
|
||||
}
|
||||
|
||||
return buf, countBits(buf)
|
||||
}
|
||||
|
||||
// Unmarshal converts point, serialized by Marshal, into x, y pair.
|
||||
// For 0x40 compressed points (for Curve 25519), y will always be 0.
|
||||
// It is an error if point is not on the curve, On error, x = nil.
|
||||
func Unmarshal(curve elliptic.Curve, data []byte) (x, y *big.Int) {
|
||||
cv, ok := curve25519.ToCurve25519(curve)
|
||||
if ok {
|
||||
return cv.UnmarshalType40(data)
|
||||
}
|
||||
|
||||
return elliptic.Unmarshal(curve, data)
|
||||
}
|
|
@ -10,7 +10,7 @@
|
|||
// This form of ElGamal embeds PKCS#1 v1.5 padding, which may make it
|
||||
// unsuitable for other protocols. RSA should be used in preference in any
|
||||
// case.
|
||||
package elgamal // import "golang.org/x/crypto/openpgp/elgamal"
|
||||
package elgamal // import "github.com/keybase/go-crypto/openpgp/elgamal"
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
|
@ -3,7 +3,7 @@
|
|||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package errors contains common error types for the OpenPGP packages.
|
||||
package errors // import "golang.org/x/crypto/openpgp/errors"
|
||||
package errors // import "github.com/keybase/go-crypto/openpgp/errors"
|
||||
|
||||
import (
|
||||
"strconv"
|
902
vendor/github.com/keybase/go-crypto/openpgp/keys.go
generated
vendored
Normal file
902
vendor/github.com/keybase/go-crypto/openpgp/keys.go
generated
vendored
Normal file
|
@ -0,0 +1,902 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package openpgp
|
||||
|
||||
import (
|
||||
"crypto/hmac"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"time"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/armor"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/packet"
|
||||
"github.com/keybase/go-crypto/rsa"
|
||||
)
|
||||
|
||||
// PublicKeyType is the armor type for a PGP public key.
|
||||
var PublicKeyType = "PGP PUBLIC KEY BLOCK"
|
||||
|
||||
// PrivateKeyType is the armor type for a PGP private key.
|
||||
var PrivateKeyType = "PGP PRIVATE KEY BLOCK"
|
||||
|
||||
// An Entity represents the components of an OpenPGP key: a primary public key
|
||||
// (which must be a signing key), one or more identities claimed by that key,
|
||||
// and zero or more subkeys, which may be encryption keys.
|
||||
type Entity struct {
|
||||
PrimaryKey *packet.PublicKey
|
||||
PrivateKey *packet.PrivateKey
|
||||
Identities map[string]*Identity // indexed by Identity.Name
|
||||
Revocations []*packet.Signature
|
||||
// Revocations that are signed by designated revokers. Reading keys
|
||||
// will not verify these revocations, because it won't have access to
|
||||
// issuers' public keys, API consumers should do this instead (or
|
||||
// not, and just assume that the key is probably revoked).
|
||||
UnverifiedRevocations []*packet.Signature
|
||||
Subkeys []Subkey
|
||||
BadSubkeys []BadSubkey
|
||||
}
|
||||
|
||||
// An Identity represents an identity claimed by an Entity and zero or more
|
||||
// assertions by other entities about that claim.
|
||||
type Identity struct {
|
||||
Name string // by convention, has the form "Full Name (comment) <email@example.com>"
|
||||
UserId *packet.UserId
|
||||
SelfSignature *packet.Signature
|
||||
Signatures []*packet.Signature
|
||||
Revocation *packet.Signature
|
||||
}
|
||||
|
||||
// A Subkey is an additional public key in an Entity. Subkeys can be used for
|
||||
// encryption.
|
||||
type Subkey struct {
|
||||
PublicKey *packet.PublicKey
|
||||
PrivateKey *packet.PrivateKey
|
||||
Sig *packet.Signature
|
||||
Revocation *packet.Signature
|
||||
}
|
||||
|
||||
// BadSubkey is one that failed reconstruction, but we'll keep it around for
|
||||
// informational purposes.
|
||||
type BadSubkey struct {
|
||||
Subkey
|
||||
Err error
|
||||
}
|
||||
|
||||
// A Key identifies a specific public key in an Entity. This is either the
|
||||
// Entity's primary key or a subkey.
|
||||
type Key struct {
|
||||
Entity *Entity
|
||||
PublicKey *packet.PublicKey
|
||||
PrivateKey *packet.PrivateKey
|
||||
SelfSignature *packet.Signature
|
||||
KeyFlags packet.KeyFlagBits
|
||||
}
|
||||
|
||||
// A KeyRing provides access to public and private keys.
|
||||
type KeyRing interface {
|
||||
|
||||
// KeysById returns the set of keys that have the given key id.
|
||||
// fp can be optionally supplied, which is the full key fingerprint.
|
||||
// If it's provided, then it must match. This comes up in the case
|
||||
// of GPG subpacket 33.
|
||||
KeysById(id uint64, fp []byte) []Key
|
||||
|
||||
// KeysByIdAndUsage returns the set of keys with the given id
|
||||
// that also meet the key usage given by requiredUsage.
|
||||
// The requiredUsage is expressed as the bitwise-OR of
|
||||
// packet.KeyFlag* values.
|
||||
// fp can be optionally supplied, which is the full key fingerprint.
|
||||
// If it's provided, then it must match. This comes up in the case
|
||||
// of GPG subpacket 33.
|
||||
KeysByIdUsage(id uint64, fp []byte, requiredUsage byte) []Key
|
||||
|
||||
// DecryptionKeys returns all private keys that are valid for
|
||||
// decryption.
|
||||
DecryptionKeys() []Key
|
||||
}
|
||||
|
||||
// primaryIdentity returns the Identity marked as primary or the first identity
|
||||
// if none are so marked.
|
||||
func (e *Entity) primaryIdentity() *Identity {
|
||||
var firstIdentity *Identity
|
||||
for _, ident := range e.Identities {
|
||||
if firstIdentity == nil {
|
||||
firstIdentity = ident
|
||||
}
|
||||
if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
|
||||
return ident
|
||||
}
|
||||
}
|
||||
return firstIdentity
|
||||
}
|
||||
|
||||
// encryptionKey returns the best candidate Key for encrypting a message to the
|
||||
// given Entity.
|
||||
func (e *Entity) encryptionKey(now time.Time) (Key, bool) {
|
||||
candidateSubkey := -1
|
||||
|
||||
// Iterate the keys to find the newest key
|
||||
var maxTime time.Time
|
||||
for i, subkey := range e.Subkeys {
|
||||
|
||||
// NOTE(maxtaco)
|
||||
// If there is a Flags subpacket, then we have to follow it, and only
|
||||
// use keys that are marked for Encryption of Communication. If there
|
||||
// isn't a Flags subpacket, and this is an Encrypt-Only key (right now only ElGamal
|
||||
// suffices), then we implicitly use it. The check for primary below is a little
|
||||
// more open-ended, but for now, let's be strict and potentially open up
|
||||
// if we see bugs in the wild.
|
||||
//
|
||||
// One more note: old DSA/ElGamal keys tend not to have the Flags subpacket,
|
||||
// so this sort of thing is pretty important for encrypting to older keys.
|
||||
//
|
||||
if ((subkey.Sig.FlagsValid && subkey.Sig.FlagEncryptCommunications) ||
|
||||
(!subkey.Sig.FlagsValid && subkey.PublicKey.PubKeyAlgo == packet.PubKeyAlgoElGamal)) &&
|
||||
subkey.PublicKey.PubKeyAlgo.CanEncrypt() &&
|
||||
!subkey.Sig.KeyExpired(now) &&
|
||||
subkey.Revocation == nil &&
|
||||
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
|
||||
candidateSubkey = i
|
||||
maxTime = subkey.Sig.CreationTime
|
||||
}
|
||||
}
|
||||
|
||||
if candidateSubkey != -1 {
|
||||
subkey := e.Subkeys[candidateSubkey]
|
||||
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig, subkey.Sig.GetKeyFlags()}, true
|
||||
}
|
||||
|
||||
// If we don't have any candidate subkeys for encryption and
|
||||
// the primary key doesn't have any usage metadata then we
|
||||
// assume that the primary key is ok. Or, if the primary key is
|
||||
// marked as ok to encrypt to, then we can obviously use it.
|
||||
//
|
||||
// NOTE(maxtaco) - see note above, how this policy is a little too open-ended
|
||||
// for my liking, but leave it for now.
|
||||
i := e.primaryIdentity()
|
||||
if (!i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications) &&
|
||||
e.PrimaryKey.PubKeyAlgo.CanEncrypt() &&
|
||||
!i.SelfSignature.KeyExpired(now) {
|
||||
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature, i.SelfSignature.GetKeyFlags()}, true
|
||||
}
|
||||
|
||||
// This Entity appears to be signing only.
|
||||
return Key{}, false
|
||||
}
|
||||
|
||||
// signingKey return the best candidate Key for signing a message with this
|
||||
// Entity.
|
||||
func (e *Entity) signingKey(now time.Time) (Key, bool) {
|
||||
candidateSubkey := -1
|
||||
|
||||
for i, subkey := range e.Subkeys {
|
||||
if (!subkey.Sig.FlagsValid || subkey.Sig.FlagSign) &&
|
||||
subkey.PrivateKey.PrivateKey != nil &&
|
||||
subkey.PublicKey.PubKeyAlgo.CanSign() &&
|
||||
subkey.Revocation == nil &&
|
||||
!subkey.Sig.KeyExpired(now) {
|
||||
candidateSubkey = i
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if candidateSubkey != -1 {
|
||||
subkey := e.Subkeys[candidateSubkey]
|
||||
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig, subkey.Sig.GetKeyFlags()}, true
|
||||
}
|
||||
|
||||
// If we have no candidate subkey then we assume that it's ok to sign
|
||||
// with the primary key.
|
||||
i := e.primaryIdentity()
|
||||
if (!i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign) &&
|
||||
e.PrimaryKey.PubKeyAlgo.CanSign() &&
|
||||
!i.SelfSignature.KeyExpired(now) &&
|
||||
e.PrivateKey.PrivateKey != nil {
|
||||
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature, i.SelfSignature.GetKeyFlags()}, true
|
||||
}
|
||||
|
||||
return Key{}, false
|
||||
}
|
||||
|
||||
// An EntityList contains one or more Entities.
|
||||
type EntityList []*Entity
|
||||
|
||||
func keyMatchesIdAndFingerprint(key *packet.PublicKey, id uint64, fp []byte) bool {
|
||||
if key.KeyId != id {
|
||||
return false
|
||||
}
|
||||
if fp == nil {
|
||||
return true
|
||||
}
|
||||
return hmac.Equal(fp, key.Fingerprint[:])
|
||||
}
|
||||
|
||||
// KeysById returns the set of keys that have the given key id.
|
||||
// fp can be optionally supplied, which is the full key fingerprint.
|
||||
// If it's provided, then it must match. This comes up in the case
|
||||
// of GPG subpacket 33.
|
||||
func (el EntityList) KeysById(id uint64, fp []byte) (keys []Key) {
|
||||
for _, e := range el {
|
||||
if keyMatchesIdAndFingerprint(e.PrimaryKey, id, fp) {
|
||||
var selfSig *packet.Signature
|
||||
for _, ident := range e.Identities {
|
||||
if selfSig == nil {
|
||||
selfSig = ident.SelfSignature
|
||||
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
|
||||
selfSig = ident.SelfSignature
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
var keyFlags packet.KeyFlagBits
|
||||
for _, ident := range e.Identities {
|
||||
keyFlags.Merge(ident.SelfSignature.GetKeyFlags())
|
||||
}
|
||||
|
||||
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig, keyFlags})
|
||||
}
|
||||
|
||||
for _, subKey := range e.Subkeys {
|
||||
if keyMatchesIdAndFingerprint(subKey.PublicKey, id, fp) {
|
||||
|
||||
// If there's both a a revocation and a sig, then take the
|
||||
// revocation. Otherwise, we can proceed with the sig.
|
||||
sig := subKey.Revocation
|
||||
if sig == nil {
|
||||
sig = subKey.Sig
|
||||
}
|
||||
|
||||
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, sig, sig.GetKeyFlags()})
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// KeysByIdAndUsage returns the set of keys with the given id that also meet
|
||||
// the key usage given by requiredUsage. The requiredUsage is expressed as
|
||||
// the bitwise-OR of packet.KeyFlag* values.
|
||||
// fp can be optionally supplied, which is the full key fingerprint.
|
||||
// If it's provided, then it must match. This comes up in the case
|
||||
// of GPG subpacket 33.
|
||||
func (el EntityList) KeysByIdUsage(id uint64, fp []byte, requiredUsage byte) (keys []Key) {
|
||||
for _, key := range el.KeysById(id, fp) {
|
||||
if len(key.Entity.Revocations) > 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
if key.SelfSignature.RevocationReason != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
if requiredUsage != 0 {
|
||||
var usage byte
|
||||
|
||||
switch {
|
||||
case key.KeyFlags.Valid:
|
||||
usage = key.KeyFlags.BitField
|
||||
|
||||
case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoElGamal:
|
||||
// We also need to handle the case where, although the sig's
|
||||
// flags aren't valid, the key can is implicitly usable for
|
||||
// encryption by virtue of being ElGamal. See also the comment
|
||||
// in encryptionKey() above.
|
||||
usage |= packet.KeyFlagEncryptCommunications
|
||||
usage |= packet.KeyFlagEncryptStorage
|
||||
|
||||
case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoDSA ||
|
||||
key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoECDSA ||
|
||||
key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoEdDSA:
|
||||
usage |= packet.KeyFlagSign
|
||||
|
||||
// For a primary RSA key without any key flags, be as permissiable
|
||||
// as possible.
|
||||
case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoRSA &&
|
||||
keyMatchesIdAndFingerprint(key.Entity.PrimaryKey, id, fp):
|
||||
usage = (packet.KeyFlagCertify | packet.KeyFlagSign |
|
||||
packet.KeyFlagEncryptCommunications | packet.KeyFlagEncryptStorage)
|
||||
}
|
||||
|
||||
if usage&requiredUsage != requiredUsage {
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
keys = append(keys, key)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// DecryptionKeys returns all private keys that are valid for decryption.
|
||||
func (el EntityList) DecryptionKeys() (keys []Key) {
|
||||
for _, e := range el {
|
||||
for _, subKey := range e.Subkeys {
|
||||
if subKey.PrivateKey != nil && subKey.PrivateKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
|
||||
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig, subKey.Sig.GetKeyFlags()})
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
|
||||
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) {
|
||||
block, err := armor.Decode(r)
|
||||
if err == io.EOF {
|
||||
return nil, errors.InvalidArgumentError("no armored data found")
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if block.Type != PublicKeyType && block.Type != PrivateKeyType {
|
||||
return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type)
|
||||
}
|
||||
|
||||
return ReadKeyRing(block.Body)
|
||||
}
|
||||
|
||||
// ReadKeyRing reads one or more public/private keys. Unsupported keys are
|
||||
// ignored as long as at least a single valid key is found.
|
||||
func ReadKeyRing(r io.Reader) (el EntityList, err error) {
|
||||
packets := packet.NewReader(r)
|
||||
var lastUnsupportedError error
|
||||
|
||||
for {
|
||||
var e *Entity
|
||||
e, err = ReadEntity(packets)
|
||||
if err != nil {
|
||||
// TODO: warn about skipped unsupported/unreadable keys
|
||||
if _, ok := err.(errors.UnsupportedError); ok {
|
||||
lastUnsupportedError = err
|
||||
err = readToNextPublicKey(packets)
|
||||
} else if _, ok := err.(errors.StructuralError); ok {
|
||||
// Skip unreadable, badly-formatted keys
|
||||
lastUnsupportedError = err
|
||||
err = readToNextPublicKey(packets)
|
||||
}
|
||||
if err == io.EOF {
|
||||
err = nil
|
||||
break
|
||||
}
|
||||
if err != nil {
|
||||
el = nil
|
||||
break
|
||||
}
|
||||
} else {
|
||||
el = append(el, e)
|
||||
}
|
||||
}
|
||||
|
||||
if len(el) == 0 && err == nil {
|
||||
err = lastUnsupportedError
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// readToNextPublicKey reads packets until the start of the entity and leaves
|
||||
// the first packet of the new entity in the Reader.
|
||||
func readToNextPublicKey(packets *packet.Reader) (err error) {
|
||||
var p packet.Packet
|
||||
for {
|
||||
p, err = packets.Next()
|
||||
if err == io.EOF {
|
||||
return
|
||||
} else if err != nil {
|
||||
if _, ok := err.(errors.UnsupportedError); ok {
|
||||
err = nil
|
||||
continue
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
|
||||
packets.Unread(p)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
// ReadEntity reads an entity (public key, identities, subkeys etc) from the
|
||||
// given Reader.
|
||||
func ReadEntity(packets *packet.Reader) (*Entity, error) {
|
||||
e := new(Entity)
|
||||
e.Identities = make(map[string]*Identity)
|
||||
|
||||
p, err := packets.Next()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var ok bool
|
||||
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
|
||||
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
|
||||
packets.Unread(p)
|
||||
return nil, errors.StructuralError("first packet was not a public/private key")
|
||||
} else {
|
||||
e.PrimaryKey = &e.PrivateKey.PublicKey
|
||||
}
|
||||
}
|
||||
|
||||
if !e.PrimaryKey.PubKeyAlgo.CanSign() {
|
||||
return nil, errors.StructuralError("primary key cannot be used for signatures")
|
||||
}
|
||||
|
||||
var current *Identity
|
||||
var revocations []*packet.Signature
|
||||
|
||||
designatedRevokers := make(map[uint64]bool)
|
||||
EachPacket:
|
||||
for {
|
||||
p, err := packets.Next()
|
||||
if err == io.EOF {
|
||||
break
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
switch pkt := p.(type) {
|
||||
case *packet.UserId:
|
||||
|
||||
// Make a new Identity object, that we might wind up throwing away.
|
||||
// We'll only add it if we get a valid self-signature over this
|
||||
// userID.
|
||||
current = new(Identity)
|
||||
current.Name = pkt.Id
|
||||
current.UserId = pkt
|
||||
case *packet.Signature:
|
||||
if pkt.SigType == packet.SigTypeKeyRevocation {
|
||||
// These revocations won't revoke UIDs (see
|
||||
// SigTypeIdentityRevocation). Handle these first,
|
||||
// because key might have revocation coming from
|
||||
// another key (designated revoke).
|
||||
revocations = append(revocations, pkt)
|
||||
continue
|
||||
}
|
||||
|
||||
// These are signatures by other people on this key. Let's just ignore them
|
||||
// from the beginning, since they shouldn't affect our key decoding one way
|
||||
// or the other.
|
||||
if pkt.IssuerKeyId != nil && *pkt.IssuerKeyId != e.PrimaryKey.KeyId {
|
||||
continue
|
||||
}
|
||||
|
||||
// If this is a signature made by the keyholder, and the signature has stubbed out
|
||||
// critical packets, then *now* we need to bail out.
|
||||
if e := pkt.StubbedOutCriticalError; e != nil {
|
||||
return nil, e
|
||||
}
|
||||
|
||||
// Next handle the case of a self-signature. According to RFC8440,
|
||||
// Section 5.2.3.3, if there are several self-signatures,
|
||||
// we should take the newer one. If they were both created
|
||||
// at the same time, but one of them has keyflags specified and the
|
||||
// other doesn't, keep the one with the keyflags. We have actually
|
||||
// seen this in the wild (see the 'Yield' test in read_test.go).
|
||||
// If there is a tie, and both have the same value for FlagsValid,
|
||||
// then "last writer wins."
|
||||
//
|
||||
// HOWEVER! We have seen yet more keys in the wild (see the 'Spiros'
|
||||
// test in read_test.go), in which the later self-signature is a bunch
|
||||
// of junk, and doesn't even specify key flags. Does it really make
|
||||
// sense to overwrite reasonable key flags with the empty set? I'm not
|
||||
// sure what that would be trying to achieve, and plus GPG seems to be
|
||||
// ok with this situation, and ignores the later (empty) keyflag set.
|
||||
// So further tighten our overwrite rules, and only allow the later
|
||||
// signature to overwrite the earlier signature if so doing won't
|
||||
// trash the key flags.
|
||||
if current != nil &&
|
||||
(current.SelfSignature == nil ||
|
||||
(!pkt.CreationTime.Before(current.SelfSignature.CreationTime) &&
|
||||
(pkt.FlagsValid || !current.SelfSignature.FlagsValid))) &&
|
||||
(pkt.SigType == packet.SigTypePositiveCert || pkt.SigType == packet.SigTypeGenericCert) &&
|
||||
pkt.IssuerKeyId != nil &&
|
||||
*pkt.IssuerKeyId == e.PrimaryKey.KeyId {
|
||||
|
||||
if err = e.PrimaryKey.VerifyUserIdSignature(current.Name, e.PrimaryKey, pkt); err == nil {
|
||||
|
||||
current.SelfSignature = pkt
|
||||
|
||||
// NOTE(maxtaco) 2016.01.11
|
||||
// Only register an identity once we've gotten a valid self-signature.
|
||||
// It's possible therefore for us to throw away `current` in the case
|
||||
// no valid self-signatures were found. That's OK as long as there are
|
||||
// other identies that make sense.
|
||||
//
|
||||
// NOTE! We might later see a revocation for this very same UID, and it
|
||||
// won't be undone. We've preserved this feature from the original
|
||||
// Google OpenPGP we forked from.
|
||||
e.Identities[current.Name] = current
|
||||
} else {
|
||||
// We really should warn that there was a failure here. Not raise an error
|
||||
// since this really shouldn't be a fail-stop error.
|
||||
}
|
||||
} else if current != nil && pkt.SigType == packet.SigTypeIdentityRevocation {
|
||||
if err = e.PrimaryKey.VerifyUserIdSignature(current.Name, e.PrimaryKey, pkt); err == nil {
|
||||
// Note: we are not removing the identity from
|
||||
// e.Identities. Caller can always filter by Revocation
|
||||
// field to ignore revoked identities.
|
||||
current.Revocation = pkt
|
||||
}
|
||||
} else if pkt.SigType == packet.SigTypeDirectSignature {
|
||||
if err = e.PrimaryKey.VerifyRevocationSignature(e.PrimaryKey, pkt); err == nil {
|
||||
if desig := pkt.DesignatedRevoker; desig != nil {
|
||||
// If it's a designated revoker signature, take last 8 octects
|
||||
// of fingerprint as Key ID and save it to designatedRevokers
|
||||
// map. We consult this map later to see if a foreign
|
||||
// revocation should be added to UnverifiedRevocations.
|
||||
keyID := binary.BigEndian.Uint64(desig.Fingerprint[len(desig.Fingerprint)-8:])
|
||||
designatedRevokers[keyID] = true
|
||||
}
|
||||
}
|
||||
} else if current == nil {
|
||||
// NOTE(maxtaco)
|
||||
//
|
||||
// See https://github.com/keybase/client/issues/2666
|
||||
//
|
||||
// There might have been a user attribute picture before this signature,
|
||||
// in which case this is still a valid PGP key. In the future we might
|
||||
// not ignore user attributes (like picture). But either way, it doesn't
|
||||
// make sense to bail out here. Keep looking for other valid signatures.
|
||||
//
|
||||
// Used to be:
|
||||
// return nil, errors.StructuralError("signature packet found before user id packet")
|
||||
} else {
|
||||
current.Signatures = append(current.Signatures, pkt)
|
||||
}
|
||||
case *packet.PrivateKey:
|
||||
if pkt.IsSubkey == false {
|
||||
packets.Unread(p)
|
||||
break EachPacket
|
||||
}
|
||||
err = addSubkey(e, packets, &pkt.PublicKey, pkt)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
case *packet.PublicKey:
|
||||
if pkt.IsSubkey == false {
|
||||
packets.Unread(p)
|
||||
break EachPacket
|
||||
}
|
||||
err = addSubkey(e, packets, pkt, nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
default:
|
||||
// we ignore unknown packets
|
||||
}
|
||||
}
|
||||
|
||||
if len(e.Identities) == 0 {
|
||||
return nil, errors.StructuralError("entity without any identities")
|
||||
}
|
||||
|
||||
for _, revocation := range revocations {
|
||||
if revocation.IssuerKeyId == nil || *revocation.IssuerKeyId == e.PrimaryKey.KeyId {
|
||||
// Key revokes itself, something that we can verify.
|
||||
err = e.PrimaryKey.VerifyRevocationSignature(e.PrimaryKey, revocation)
|
||||
if err == nil {
|
||||
e.Revocations = append(e.Revocations, revocation)
|
||||
} else {
|
||||
return nil, errors.StructuralError("revocation signature signed by alternate key")
|
||||
}
|
||||
} else if revocation.IssuerKeyId != nil {
|
||||
if _, ok := designatedRevokers[*revocation.IssuerKeyId]; ok {
|
||||
// Revocation is done by certified designated revoker,
|
||||
// but we can't verify the revocation.
|
||||
e.UnverifiedRevocations = append(e.UnverifiedRevocations, revocation)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return e, nil
|
||||
}
|
||||
|
||||
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
|
||||
var subKey Subkey
|
||||
subKey.PublicKey = pub
|
||||
subKey.PrivateKey = priv
|
||||
var lastErr error
|
||||
for {
|
||||
p, err := packets.Next()
|
||||
if err == io.EOF {
|
||||
break
|
||||
}
|
||||
if err != nil {
|
||||
return errors.StructuralError("subkey signature invalid: " + err.Error())
|
||||
}
|
||||
sig, ok := p.(*packet.Signature)
|
||||
if !ok {
|
||||
// Hit a non-signature packet, so assume we're up to the next key
|
||||
packets.Unread(p)
|
||||
break
|
||||
}
|
||||
if st := sig.SigType; st != packet.SigTypeSubkeyBinding && st != packet.SigTypeSubkeyRevocation {
|
||||
|
||||
// Note(maxtaco):
|
||||
// We used to error out here, but instead, let's fast-forward past
|
||||
// packets that are in the wrong place (like misplaced 0x13 signatures)
|
||||
// until we get to one that works. For a test case,
|
||||
// see TestWithBadSubkeySignaturePackets.
|
||||
|
||||
continue
|
||||
}
|
||||
err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig)
|
||||
if err != nil {
|
||||
// Non valid signature, so again, no need to abandon all hope, just continue;
|
||||
// make a note of the error we hit.
|
||||
lastErr = errors.StructuralError("subkey signature invalid: " + err.Error())
|
||||
continue
|
||||
}
|
||||
switch sig.SigType {
|
||||
case packet.SigTypeSubkeyBinding:
|
||||
// Does the "new" sig set expiration to later date than
|
||||
// "previous" sig?
|
||||
if subKey.Sig == nil || subKey.Sig.ExpiresBeforeOther(sig) {
|
||||
subKey.Sig = sig
|
||||
}
|
||||
case packet.SigTypeSubkeyRevocation:
|
||||
// First writer wins
|
||||
if subKey.Revocation == nil {
|
||||
subKey.Revocation = sig
|
||||
}
|
||||
}
|
||||
}
|
||||
if subKey.Sig != nil {
|
||||
e.Subkeys = append(e.Subkeys, subKey)
|
||||
} else {
|
||||
if lastErr == nil {
|
||||
lastErr = errors.StructuralError("Subkey wasn't signed; expected a 'binding' signature")
|
||||
}
|
||||
e.BadSubkeys = append(e.BadSubkeys, BadSubkey{Subkey: subKey, Err: lastErr})
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
const defaultRSAKeyBits = 2048
|
||||
|
||||
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
|
||||
// single identity composed of the given full name, comment and email, any of
|
||||
// which may be empty but must not contain any of "()<>\x00".
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
|
||||
currentTime := config.Now()
|
||||
|
||||
bits := defaultRSAKeyBits
|
||||
if config != nil && config.RSABits != 0 {
|
||||
bits = config.RSABits
|
||||
}
|
||||
|
||||
uid := packet.NewUserId(name, comment, email)
|
||||
if uid == nil {
|
||||
return nil, errors.InvalidArgumentError("user id field contained invalid characters")
|
||||
}
|
||||
signingPriv, err := rsa.GenerateKey(config.Random(), bits)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
e := &Entity{
|
||||
PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey),
|
||||
PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv),
|
||||
Identities: make(map[string]*Identity),
|
||||
}
|
||||
isPrimaryId := true
|
||||
e.Identities[uid.Id] = &Identity{
|
||||
Name: uid.Name,
|
||||
UserId: uid,
|
||||
SelfSignature: &packet.Signature{
|
||||
CreationTime: currentTime,
|
||||
SigType: packet.SigTypePositiveCert,
|
||||
PubKeyAlgo: packet.PubKeyAlgoRSA,
|
||||
Hash: config.Hash(),
|
||||
IsPrimaryId: &isPrimaryId,
|
||||
FlagsValid: true,
|
||||
FlagSign: true,
|
||||
FlagCertify: true,
|
||||
IssuerKeyId: &e.PrimaryKey.KeyId,
|
||||
},
|
||||
}
|
||||
|
||||
e.Subkeys = make([]Subkey, 1)
|
||||
e.Subkeys[0] = Subkey{
|
||||
PublicKey: packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey),
|
||||
PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv),
|
||||
Sig: &packet.Signature{
|
||||
CreationTime: currentTime,
|
||||
SigType: packet.SigTypeSubkeyBinding,
|
||||
PubKeyAlgo: packet.PubKeyAlgoRSA,
|
||||
Hash: config.Hash(),
|
||||
FlagsValid: true,
|
||||
FlagEncryptStorage: true,
|
||||
FlagEncryptCommunications: true,
|
||||
IssuerKeyId: &e.PrimaryKey.KeyId,
|
||||
},
|
||||
}
|
||||
e.Subkeys[0].PublicKey.IsSubkey = true
|
||||
e.Subkeys[0].PrivateKey.IsSubkey = true
|
||||
|
||||
return e, nil
|
||||
}
|
||||
|
||||
// SerializePrivate serializes an Entity, including private key material, to
|
||||
// the given Writer. For now, it must only be used on an Entity returned from
|
||||
// NewEntity.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
|
||||
err = e.PrivateKey.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
for _, ident := range e.Identities {
|
||||
err = ident.UserId.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
if e.PrivateKey.PrivateKey != nil {
|
||||
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
err = ident.SelfSignature.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
for _, subkey := range e.Subkeys {
|
||||
err = subkey.PrivateKey.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
// Workaround shortcoming of SignKey(), which doesn't work to reverse-sign
|
||||
// sub-signing keys. So if requested, just reuse the signatures already
|
||||
// available to us (if we read this key from a keyring).
|
||||
if e.PrivateKey.PrivateKey != nil && !config.ReuseSignatures() {
|
||||
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
if subkey.Revocation != nil {
|
||||
err = subkey.Revocation.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
err = subkey.Sig.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Serialize writes the public part of the given Entity to w. (No private
|
||||
// key material will be output).
|
||||
func (e *Entity) Serialize(w io.Writer) error {
|
||||
err := e.PrimaryKey.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, ident := range e.Identities {
|
||||
err = ident.UserId.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
err = ident.SelfSignature.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, sig := range ident.Signatures {
|
||||
err = sig.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
for _, subkey := range e.Subkeys {
|
||||
err = subkey.PublicKey.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if subkey.Revocation != nil {
|
||||
err = subkey.Revocation.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
err = subkey.Sig.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// SignIdentity adds a signature to e, from signer, attesting that identity is
|
||||
// associated with e. The provided identity must already be an element of
|
||||
// e.Identities and the private key of signer must have been decrypted if
|
||||
// necessary.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
|
||||
if signer.PrivateKey == nil {
|
||||
return errors.InvalidArgumentError("signing Entity must have a private key")
|
||||
}
|
||||
if signer.PrivateKey.Encrypted {
|
||||
return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
|
||||
}
|
||||
ident, ok := e.Identities[identity]
|
||||
if !ok {
|
||||
return errors.InvalidArgumentError("given identity string not found in Entity")
|
||||
}
|
||||
|
||||
sig := &packet.Signature{
|
||||
SigType: packet.SigTypeGenericCert,
|
||||
PubKeyAlgo: signer.PrivateKey.PubKeyAlgo,
|
||||
Hash: config.Hash(),
|
||||
CreationTime: config.Now(),
|
||||
IssuerKeyId: &signer.PrivateKey.KeyId,
|
||||
}
|
||||
if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
|
||||
return err
|
||||
}
|
||||
ident.Signatures = append(ident.Signatures, sig)
|
||||
return nil
|
||||
}
|
||||
|
||||
// CopySubkeyRevocations copies subkey revocations from the src Entity over
|
||||
// to the receiver entity. We need this because `gpg --export-secret-key` does
|
||||
// not appear to output subkey revocations. In this case we need to manually
|
||||
// merge with the output of `gpg --export`.
|
||||
func (e *Entity) CopySubkeyRevocations(src *Entity) {
|
||||
m := make(map[[20]byte]*packet.Signature)
|
||||
for _, subkey := range src.Subkeys {
|
||||
if subkey.Revocation != nil {
|
||||
m[subkey.PublicKey.Fingerprint] = subkey.Revocation
|
||||
}
|
||||
}
|
||||
for i, subkey := range e.Subkeys {
|
||||
if r := m[subkey.PublicKey.Fingerprint]; r != nil {
|
||||
e.Subkeys[i].Revocation = r
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// CheckDesignatedRevokers will try to confirm any of designated
|
||||
// revocation of entity. For this function to work, revocation
|
||||
// issuer's key should be found in keyring. First successfully
|
||||
// verified designated revocation is returned along with the key that
|
||||
// verified it.
|
||||
func FindVerifiedDesignatedRevoke(keyring KeyRing, entity *Entity) (*packet.Signature, *Key) {
|
||||
for _, sig := range entity.UnverifiedRevocations {
|
||||
if sig.IssuerKeyId == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
issuerKeyId := *sig.IssuerKeyId
|
||||
issuerFingerprint := sig.IssuerFingerprint
|
||||
keys := keyring.KeysByIdUsage(issuerKeyId, issuerFingerprint, packet.KeyFlagSign)
|
||||
if len(keys) == 0 {
|
||||
continue
|
||||
}
|
||||
for _, key := range keys {
|
||||
err := key.PublicKey.VerifyRevocationSignature(entity.PrimaryKey, sig)
|
||||
if err == nil {
|
||||
return sig, &key
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nil, nil
|
||||
}
|
|
@ -8,9 +8,10 @@ import (
|
|||
"compress/bzip2"
|
||||
"compress/flate"
|
||||
"compress/zlib"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"io"
|
||||
"strconv"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// Compressed represents a compressed OpenPGP packet. The decompressed contents
|
|
@ -46,6 +46,9 @@ type Config struct {
|
|||
// RSABits is the number of bits in new RSA keys made with NewEntity.
|
||||
// If zero, then 2048 bit keys are created.
|
||||
RSABits int
|
||||
// ReuseSignatures tells us to reuse existing Signatures
|
||||
// on serialized output.
|
||||
ReuseSignaturesOnSerialize bool
|
||||
}
|
||||
|
||||
func (c *Config) Random() io.Reader {
|
||||
|
@ -89,3 +92,7 @@ func (c *Config) PasswordHashIterations() int {
|
|||
}
|
||||
return c.S2KCount
|
||||
}
|
||||
|
||||
func (c *Config) ReuseSignatures() bool {
|
||||
return c != nil && c.ReuseSignaturesOnSerialize
|
||||
}
|
104
vendor/github.com/keybase/go-crypto/openpgp/packet/ecdh.go
generated
vendored
Normal file
104
vendor/github.com/keybase/go-crypto/openpgp/packet/ecdh.go
generated
vendored
Normal file
|
@ -0,0 +1,104 @@
|
|||
package packet
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/ecdh"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
)
|
||||
|
||||
// ECDHKdfParams generates KDF parameters sequence for given
|
||||
// PublicKey. See https://tools.ietf.org/html/rfc6637#section-8
|
||||
func ECDHKdfParams(pub *PublicKey) []byte {
|
||||
buf := new(bytes.Buffer)
|
||||
oid := pub.ec.oid
|
||||
buf.WriteByte(byte(len(oid)))
|
||||
buf.Write(oid)
|
||||
buf.WriteByte(18) // ECDH TYPE
|
||||
pub.ecdh.serialize(buf)
|
||||
buf.WriteString("Anonymous Sender ")
|
||||
buf.Write(pub.Fingerprint[:])
|
||||
return buf.Bytes()
|
||||
}
|
||||
|
||||
func decryptKeyECDH(priv *PrivateKey, X, Y *big.Int, C []byte) (out []byte, err error) {
|
||||
ecdhpriv, ok := priv.PrivateKey.(*ecdh.PrivateKey)
|
||||
if !ok {
|
||||
return nil, errors.InvalidArgumentError("bad internal ECDH key")
|
||||
}
|
||||
|
||||
Sx := ecdhpriv.DecryptShared(X, Y)
|
||||
|
||||
kdfParams := ECDHKdfParams(&priv.PublicKey)
|
||||
hash, ok := s2k.HashIdToHash(byte(priv.ecdh.KdfHash))
|
||||
if !ok {
|
||||
return nil, errors.InvalidArgumentError("invalid hash id in private key")
|
||||
}
|
||||
|
||||
key := ecdhpriv.KDF(Sx, kdfParams, hash)
|
||||
keySize := CipherFunction(priv.ecdh.KdfAlgo).KeySize()
|
||||
|
||||
decrypted, err := ecdh.AESKeyUnwrap(key[:keySize], C)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// We have to "read ahead" to discover real length of the
|
||||
// encryption key and properly unpad buffer.
|
||||
cipherFunc := CipherFunction(decrypted[0])
|
||||
// +3 bytes = 1-byte cipher id and checksum 2-byte checksum.
|
||||
out = ecdh.UnpadBuffer(decrypted, cipherFunc.KeySize()+3)
|
||||
if out == nil {
|
||||
return nil, errors.InvalidArgumentError("invalid padding while ECDH")
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func serializeEncryptedKeyECDH(w io.Writer, rand io.Reader, header [10]byte, pub *PublicKey, keyBlock []byte) error {
|
||||
ecdhpub := pub.PublicKey.(*ecdh.PublicKey)
|
||||
kdfParams := ECDHKdfParams(pub)
|
||||
|
||||
hash, ok := s2k.HashIdToHash(byte(pub.ecdh.KdfHash))
|
||||
if !ok {
|
||||
return errors.InvalidArgumentError("invalid hash id in private key")
|
||||
}
|
||||
|
||||
kdfKeySize := CipherFunction(pub.ecdh.KdfAlgo).KeySize()
|
||||
Vx, Vy, C, err := ecdhpub.Encrypt(rand, kdfParams, keyBlock, hash, kdfKeySize)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
mpis, mpiBitLen := ecdh.Marshal(ecdhpub.Curve, Vx, Vy)
|
||||
|
||||
packetLen := len(header) /* header length in bytes */
|
||||
packetLen += 2 /* mpi length in bits */ + len(mpis)
|
||||
packetLen += 1 /* ciphertext size in bytes */ + len(C)
|
||||
|
||||
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = w.Write(header[:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = w.Write([]byte{byte(mpiBitLen >> 8), byte(mpiBitLen)})
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = w.Write(mpis[:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
w.Write([]byte{byte(len(C))})
|
||||
w.Write(C[:])
|
||||
return nil
|
||||
}
|
|
@ -5,14 +5,15 @@
|
|||
package packet
|
||||
|
||||
import (
|
||||
"crypto/rsa"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"math/big"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/crypto/openpgp/elgamal"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/ecdh"
|
||||
"github.com/keybase/go-crypto/openpgp/elgamal"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/rsa"
|
||||
)
|
||||
|
||||
const encryptedKeyVersion = 3
|
||||
|
@ -26,6 +27,7 @@ type EncryptedKey struct {
|
|||
Key []byte // only valid after a successful Decrypt
|
||||
|
||||
encryptedMPI1, encryptedMPI2 parsedMPI
|
||||
ecdh_C []byte
|
||||
}
|
||||
|
||||
func (e *EncryptedKey) parse(r io.Reader) (err error) {
|
||||
|
@ -48,9 +50,25 @@ func (e *EncryptedKey) parse(r io.Reader) (err error) {
|
|||
return
|
||||
}
|
||||
e.encryptedMPI2.bytes, e.encryptedMPI2.bitLength, err = readMPI(r)
|
||||
case PubKeyAlgoECDH:
|
||||
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
_, err = readFull(r, buf[:1]) // read C len (1 byte)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
e.ecdh_C = make([]byte, int(buf[0]))
|
||||
_, err = readFull(r, e.ecdh_C)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = consumeAll(r)
|
||||
return
|
||||
return err
|
||||
}
|
||||
|
||||
func checksumKeyMaterial(key []byte) uint16 {
|
||||
|
@ -77,6 +95,13 @@ func (e *EncryptedKey) Decrypt(priv *PrivateKey, config *Config) error {
|
|||
c1 := new(big.Int).SetBytes(e.encryptedMPI1.bytes)
|
||||
c2 := new(big.Int).SetBytes(e.encryptedMPI2.bytes)
|
||||
b, err = elgamal.Decrypt(priv.PrivateKey.(*elgamal.PrivateKey), c1, c2)
|
||||
case PubKeyAlgoECDH:
|
||||
// Note: Unmarshal checks if point is on the curve.
|
||||
c1, c2 := ecdh.Unmarshal(priv.PrivateKey.(*ecdh.PrivateKey).Curve, e.encryptedMPI1.bytes)
|
||||
if c1 == nil {
|
||||
return errors.InvalidArgumentError("failed to parse EC point for encryption key")
|
||||
}
|
||||
b, err = decryptKeyECDH(priv, c1, c2, e.ecdh_C)
|
||||
default:
|
||||
err = errors.InvalidArgumentError("cannot decrypted encrypted session key with private key of type " + strconv.Itoa(int(priv.PubKeyAlgo)))
|
||||
}
|
||||
|
@ -147,6 +172,8 @@ func SerializeEncryptedKey(w io.Writer, pub *PublicKey, cipherFunc CipherFunctio
|
|||
return serializeEncryptedKeyRSA(w, config.Random(), buf, pub.PublicKey.(*rsa.PublicKey), keyBlock)
|
||||
case PubKeyAlgoElGamal:
|
||||
return serializeEncryptedKeyElGamal(w, config.Random(), buf, pub.PublicKey.(*elgamal.PublicKey), keyBlock)
|
||||
case PubKeyAlgoECDH:
|
||||
return serializeEncryptedKeyECDH(w, config.Random(), buf, pub, keyBlock)
|
||||
case PubKeyAlgoDSA, PubKeyAlgoRSASignOnly:
|
||||
return errors.InvalidArgumentError("cannot encrypt to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
|
||||
}
|
|
@ -7,10 +7,11 @@ package packet
|
|||
import (
|
||||
"crypto"
|
||||
"encoding/binary"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/s2k"
|
||||
"io"
|
||||
"strconv"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
)
|
||||
|
||||
// OnePassSignature represents a one-pass signature packet. See RFC 4880,
|
|
@ -9,7 +9,7 @@ import (
|
|||
"io"
|
||||
"io/ioutil"
|
||||
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// OpaquePacket represents an OpenPGP packet as raw, unparsed data. This is
|
|
@ -4,17 +4,19 @@
|
|||
|
||||
// Package packet implements parsing and serialization of OpenPGP packets, as
|
||||
// specified in RFC 4880.
|
||||
package packet // import "golang.org/x/crypto/openpgp/packet"
|
||||
package packet // import "github.com/keybase/go-crypto/openpgp/packet"
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"crypto/aes"
|
||||
"crypto/cipher"
|
||||
"crypto/des"
|
||||
"golang.org/x/crypto/cast5"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"crypto/elliptic"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
"github.com/keybase/go-crypto/cast5"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// readFull is the same as io.ReadFull except that reading zero bytes returns
|
||||
|
@ -273,6 +275,8 @@ func consumeAll(r io.Reader) (n int64, err error) {
|
|||
return
|
||||
}
|
||||
}
|
||||
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
// packetType represents the numeric ids of the different OpenPGP packet types. See
|
||||
|
@ -383,17 +387,18 @@ func Read(r io.Reader) (p Packet, err error) {
|
|||
type SignatureType uint8
|
||||
|
||||
const (
|
||||
SigTypeBinary SignatureType = 0
|
||||
SigTypeText = 1
|
||||
SigTypeGenericCert = 0x10
|
||||
SigTypePersonaCert = 0x11
|
||||
SigTypeCasualCert = 0x12
|
||||
SigTypePositiveCert = 0x13
|
||||
SigTypeSubkeyBinding = 0x18
|
||||
SigTypePrimaryKeyBinding = 0x19
|
||||
SigTypeDirectSignature = 0x1F
|
||||
SigTypeKeyRevocation = 0x20
|
||||
SigTypeSubkeyRevocation = 0x28
|
||||
SigTypeBinary SignatureType = 0
|
||||
SigTypeText = 1
|
||||
SigTypeGenericCert = 0x10
|
||||
SigTypePersonaCert = 0x11
|
||||
SigTypeCasualCert = 0x12
|
||||
SigTypePositiveCert = 0x13
|
||||
SigTypeSubkeyBinding = 0x18
|
||||
SigTypePrimaryKeyBinding = 0x19
|
||||
SigTypeDirectSignature = 0x1F
|
||||
SigTypeKeyRevocation = 0x20
|
||||
SigTypeSubkeyRevocation = 0x28
|
||||
SigTypeIdentityRevocation = 0x30
|
||||
)
|
||||
|
||||
// PublicKeyAlgorithm represents the different public key system specified for
|
||||
|
@ -410,13 +415,15 @@ const (
|
|||
// RFC 6637, Section 5.
|
||||
PubKeyAlgoECDH PublicKeyAlgorithm = 18
|
||||
PubKeyAlgoECDSA PublicKeyAlgorithm = 19
|
||||
// RFC -1
|
||||
PubKeyAlgoEdDSA PublicKeyAlgorithm = 22
|
||||
)
|
||||
|
||||
// CanEncrypt returns true if it's possible to encrypt a message to a public
|
||||
// key of the given type.
|
||||
func (pka PublicKeyAlgorithm) CanEncrypt() bool {
|
||||
switch pka {
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoElGamal:
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoElGamal, PubKeyAlgoECDH:
|
||||
return true
|
||||
}
|
||||
return false
|
||||
|
@ -426,7 +433,7 @@ func (pka PublicKeyAlgorithm) CanEncrypt() bool {
|
|||
// sign a message.
|
||||
func (pka PublicKeyAlgorithm) CanSign() bool {
|
||||
switch pka {
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA, PubKeyAlgoEdDSA:
|
||||
return true
|
||||
}
|
||||
return false
|
||||
|
@ -520,6 +527,25 @@ func writeMPI(w io.Writer, bitLength uint16, mpiBytes []byte) (err error) {
|
|||
return
|
||||
}
|
||||
|
||||
func WritePaddedBigInt(w io.Writer, length int, X *big.Int) (n int, err error) {
|
||||
bytes := X.Bytes()
|
||||
n1, err := w.Write(make([]byte, length-len(bytes)))
|
||||
if err != nil {
|
||||
return n1, err
|
||||
}
|
||||
n2, err := w.Write(bytes)
|
||||
if err != nil {
|
||||
return n2, err
|
||||
}
|
||||
return (n1 + n2), err
|
||||
}
|
||||
|
||||
// Minimum number of bytes to fit the curve coordinates. All
|
||||
// coordinates have to be 0-padded to this length.
|
||||
func mpiPointByteLength(curve elliptic.Curve) int {
|
||||
return (curve.Params().P.BitLen() + 7) / 8
|
||||
}
|
||||
|
||||
// writeBig serializes a *big.Int to w.
|
||||
func writeBig(w io.Writer, i *big.Int) error {
|
||||
return writeMPI(w, uint16(i.BitLen()), i.Bytes())
|
|
@ -6,21 +6,23 @@ package packet
|
|||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"crypto/cipher"
|
||||
"crypto/dsa"
|
||||
"crypto/ecdsa"
|
||||
"crypto/rsa"
|
||||
"crypto/sha1"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"math/big"
|
||||
"strconv"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/elgamal"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/ed25519"
|
||||
"github.com/keybase/go-crypto/openpgp/ecdh"
|
||||
"github.com/keybase/go-crypto/openpgp/elgamal"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/rsa"
|
||||
)
|
||||
|
||||
// PrivateKey represents a possibly encrypted private key. See RFC 4880,
|
||||
|
@ -31,9 +33,32 @@ type PrivateKey struct {
|
|||
encryptedData []byte
|
||||
cipher CipherFunction
|
||||
s2k func(out, in []byte)
|
||||
PrivateKey interface{} // An *{rsa|dsa|ecdsa}.PrivateKey or a crypto.Signer.
|
||||
PrivateKey interface{} // An *rsa.PrivateKey or *dsa.PrivateKey.
|
||||
sha1Checksum bool
|
||||
iv []byte
|
||||
s2kHeader []byte
|
||||
}
|
||||
|
||||
type EdDSAPrivateKey struct {
|
||||
PrivateKey
|
||||
seed parsedMPI
|
||||
}
|
||||
|
||||
func (e *EdDSAPrivateKey) Sign(digest []byte) (R, S []byte, err error) {
|
||||
r := bytes.NewReader(e.seed.bytes)
|
||||
publicKey, privateKey, err := ed25519.GenerateKey(r)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if !bytes.Equal(publicKey, e.PublicKey.edk.p.bytes[1:]) { // [1:] because [0] is 0x40 mpi header
|
||||
return nil, nil, errors.UnsupportedError("EdDSA: Private key does not match public key.")
|
||||
}
|
||||
|
||||
sig := ed25519.Sign(privateKey, digest)
|
||||
|
||||
sigLen := ed25519.SignatureSize / 2
|
||||
return sig[:sigLen], sig[sigLen:], nil
|
||||
}
|
||||
|
||||
func NewRSAPrivateKey(currentTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
|
||||
|
@ -64,23 +89,6 @@ func NewECDSAPrivateKey(currentTime time.Time, priv *ecdsa.PrivateKey) *PrivateK
|
|||
return pk
|
||||
}
|
||||
|
||||
// NewSignerPrivateKey creates a sign-only PrivateKey from a crypto.Signer that
|
||||
// implements RSA or ECDSA.
|
||||
func NewSignerPrivateKey(currentTime time.Time, signer crypto.Signer) *PrivateKey {
|
||||
pk := new(PrivateKey)
|
||||
switch pubkey := signer.Public().(type) {
|
||||
case rsa.PublicKey:
|
||||
pk.PublicKey = *NewRSAPublicKey(currentTime, &pubkey)
|
||||
pk.PubKeyAlgo = PubKeyAlgoRSASignOnly
|
||||
case ecdsa.PublicKey:
|
||||
pk.PublicKey = *NewECDSAPublicKey(currentTime, &pubkey)
|
||||
default:
|
||||
panic("openpgp: unknown crypto.Signer type in NewSignerPrivateKey")
|
||||
}
|
||||
pk.PrivateKey = signer
|
||||
return pk
|
||||
}
|
||||
|
||||
func (pk *PrivateKey) parse(r io.Reader) (err error) {
|
||||
err = (&pk.PublicKey).parse(r)
|
||||
if err != nil {
|
||||
|
@ -112,10 +120,16 @@ func (pk *PrivateKey) parse(r io.Reader) (err error) {
|
|||
if s2kType == 254 {
|
||||
pk.sha1Checksum = true
|
||||
}
|
||||
// S2K == nil implies that we got a "GNU Dummy" S2K. For instance,
|
||||
// because our master secret key is on a USB key in a vault somewhere.
|
||||
// In that case, there is no further data to consume here.
|
||||
if pk.s2k == nil {
|
||||
pk.Encrypted = false
|
||||
return
|
||||
}
|
||||
default:
|
||||
return errors.UnsupportedError("deprecated s2k function in private key")
|
||||
}
|
||||
|
||||
if pk.Encrypted {
|
||||
blockSize := pk.cipher.blockSize()
|
||||
if blockSize == 0 {
|
||||
|
@ -148,31 +162,105 @@ func mod64kHash(d []byte) uint16 {
|
|||
return h
|
||||
}
|
||||
|
||||
// Encrypt is the counterpart to the Decrypt() method below. It encrypts
|
||||
// the private key with the provided passphrase. If config is nil, then
|
||||
// the standard, and sensible, defaults apply.
|
||||
//
|
||||
// A key will be derived from the given passphrase using S2K Specifier
|
||||
// Type 3 (Iterated + Salted, see RFC-4880 Sec. 3.7.1.3). This choice
|
||||
// is hardcoded in s2k.Serialize(). S2KCount is hardcoded to 0, which is
|
||||
// equivalent to 65536. And the hash algorithm for key-derivation can be
|
||||
// set with config. The encrypted PrivateKey, using the algorithm specified
|
||||
// in config (if provided), is written out to the encryptedData member.
|
||||
// When Serialize() is called, this encryptedData member will be
|
||||
// serialized, using S2K Usage value of 254, and thus SHA1 checksum.
|
||||
func (pk *PrivateKey) Encrypt(passphrase []byte, config *Config) (err error) {
|
||||
if pk.PrivateKey == nil {
|
||||
return errors.InvalidArgumentError("there is no private key to encrypt")
|
||||
}
|
||||
|
||||
pk.sha1Checksum = true
|
||||
pk.cipher = config.Cipher()
|
||||
s2kConfig := s2k.Config{
|
||||
Hash: config.Hash(),
|
||||
S2KCount: 0,
|
||||
}
|
||||
s2kBuf := bytes.NewBuffer(nil)
|
||||
derivedKey := make([]byte, pk.cipher.KeySize())
|
||||
err = s2k.Serialize(s2kBuf, derivedKey, config.Random(), passphrase, &s2kConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
pk.s2kHeader = s2kBuf.Bytes()
|
||||
// No good way to set pk.s2k but to call s2k.Parse(),
|
||||
// even though we have all the information here, but
|
||||
// most of the functions needed are private to s2k.
|
||||
pk.s2k, err = s2k.Parse(s2kBuf)
|
||||
pk.iv = make([]byte, pk.cipher.blockSize())
|
||||
if _, err = config.Random().Read(pk.iv); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
privateKeyBuf := bytes.NewBuffer(nil)
|
||||
if err = pk.serializePrivateKey(privateKeyBuf); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
checksum := sha1.Sum(privateKeyBuf.Bytes())
|
||||
if _, err = privateKeyBuf.Write(checksum[:]); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
pkData := privateKeyBuf.Bytes()
|
||||
block := pk.cipher.new(derivedKey)
|
||||
pk.encryptedData = make([]byte, len(pkData))
|
||||
cfb := cipher.NewCFBEncrypter(block, pk.iv)
|
||||
cfb.XORKeyStream(pk.encryptedData, pkData)
|
||||
pk.Encrypted = true
|
||||
return nil
|
||||
}
|
||||
|
||||
func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
|
||||
// TODO(agl): support encrypted private keys
|
||||
buf := bytes.NewBuffer(nil)
|
||||
err = pk.PublicKey.serializeWithoutHeaders(buf)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
buf.WriteByte(0 /* no encryption */)
|
||||
|
||||
privateKeyBuf := bytes.NewBuffer(nil)
|
||||
|
||||
switch priv := pk.PrivateKey.(type) {
|
||||
case *rsa.PrivateKey:
|
||||
err = serializeRSAPrivateKey(privateKeyBuf, priv)
|
||||
case *dsa.PrivateKey:
|
||||
err = serializeDSAPrivateKey(privateKeyBuf, priv)
|
||||
case *elgamal.PrivateKey:
|
||||
err = serializeElGamalPrivateKey(privateKeyBuf, priv)
|
||||
case *ecdsa.PrivateKey:
|
||||
err = serializeECDSAPrivateKey(privateKeyBuf, priv)
|
||||
default:
|
||||
err = errors.InvalidArgumentError("unknown private key type")
|
||||
}
|
||||
if err != nil {
|
||||
return
|
||||
if pk.PrivateKey == nil {
|
||||
_, err = buf.Write([]byte{
|
||||
254, // SHA-1 Convention
|
||||
9, // Encryption scheme (AES256)
|
||||
101, // GNU Extensions
|
||||
2, // Hash value (SHA1)
|
||||
'G', 'N', 'U', // "GNU" as a string
|
||||
1, // Extension type 1001 (minus 1000)
|
||||
})
|
||||
} else if pk.Encrypted {
|
||||
_, err = buf.Write([]byte{
|
||||
254, // SHA-1 Convention
|
||||
byte(pk.cipher), // Encryption scheme
|
||||
})
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if _, err = buf.Write(pk.s2kHeader); err != nil {
|
||||
return err
|
||||
}
|
||||
if _, err = buf.Write(pk.iv); err != nil {
|
||||
return err
|
||||
}
|
||||
if _, err = privateKeyBuf.Write(pk.encryptedData); err != nil {
|
||||
return err
|
||||
}
|
||||
} else {
|
||||
buf.WriteByte(0 /* no encryption */)
|
||||
if err = pk.serializePrivateKey(privateKeyBuf); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
ptype := packetTypePrivateKey
|
||||
|
@ -181,7 +269,11 @@ func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
|
|||
if pk.IsSubkey {
|
||||
ptype = packetTypePrivateSubkey
|
||||
}
|
||||
err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2)
|
||||
totalLen := len(contents) + len(privateKeyBytes)
|
||||
if !pk.Encrypted {
|
||||
totalLen += 2
|
||||
}
|
||||
err = serializeHeader(w, ptype, totalLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
@ -194,15 +286,38 @@ func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
|
|||
return
|
||||
}
|
||||
|
||||
checksum := mod64kHash(privateKeyBytes)
|
||||
var checksumBytes [2]byte
|
||||
checksumBytes[0] = byte(checksum >> 8)
|
||||
checksumBytes[1] = byte(checksum)
|
||||
_, err = w.Write(checksumBytes[:])
|
||||
if len(privateKeyBytes) > 0 && !pk.Encrypted {
|
||||
checksum := mod64kHash(privateKeyBytes)
|
||||
var checksumBytes [2]byte
|
||||
checksumBytes[0] = byte(checksum >> 8)
|
||||
checksumBytes[1] = byte(checksum)
|
||||
_, err = w.Write(checksumBytes[:])
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (pk *PrivateKey) serializePrivateKey(w io.Writer) (err error) {
|
||||
switch priv := pk.PrivateKey.(type) {
|
||||
case *rsa.PrivateKey:
|
||||
err = serializeRSAPrivateKey(w, priv)
|
||||
case *dsa.PrivateKey:
|
||||
err = serializeDSAPrivateKey(w, priv)
|
||||
case *elgamal.PrivateKey:
|
||||
err = serializeElGamalPrivateKey(w, priv)
|
||||
case *ecdsa.PrivateKey:
|
||||
err = serializeECDSAPrivateKey(w, priv)
|
||||
case *ecdh.PrivateKey:
|
||||
err = serializeECDHPrivateKey(w, priv)
|
||||
case *EdDSAPrivateKey:
|
||||
err = serializeEdDSAPrivateKey(w, priv)
|
||||
default:
|
||||
err = errors.InvalidArgumentError("unknown private key type")
|
||||
}
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
|
||||
err := writeBig(w, priv.D)
|
||||
if err != nil {
|
||||
|
@ -231,11 +346,23 @@ func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
|
|||
return writeBig(w, priv.D)
|
||||
}
|
||||
|
||||
func serializeECDHPrivateKey(w io.Writer, priv *ecdh.PrivateKey) error {
|
||||
return writeBig(w, priv.X)
|
||||
}
|
||||
|
||||
func serializeEdDSAPrivateKey(w io.Writer, priv *EdDSAPrivateKey) error {
|
||||
return writeMPI(w, priv.seed.bitLength, priv.seed.bytes)
|
||||
}
|
||||
|
||||
// Decrypt decrypts an encrypted private key using a passphrase.
|
||||
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
|
||||
if !pk.Encrypted {
|
||||
return nil
|
||||
}
|
||||
// For GNU Dummy S2K, there's no key here, so don't do anything.
|
||||
if pk.s2k == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
key := make([]byte, pk.cipher.KeySize())
|
||||
pk.s2k(key, passphrase)
|
||||
|
@ -284,6 +411,10 @@ func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
|
|||
return pk.parseElGamalPrivateKey(data)
|
||||
case PubKeyAlgoECDSA:
|
||||
return pk.parseECDSAPrivateKey(data)
|
||||
case PubKeyAlgoECDH:
|
||||
return pk.parseECDHPrivateKey(data)
|
||||
case PubKeyAlgoEdDSA:
|
||||
return pk.parseEdDSAPrivateKey(data)
|
||||
}
|
||||
panic("impossible")
|
||||
}
|
||||
|
@ -360,8 +491,10 @@ func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
|
|||
return nil
|
||||
}
|
||||
|
||||
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
|
||||
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
|
||||
func (pk *PrivateKey) parseECDHPrivateKey(data []byte) (err error) {
|
||||
pub := pk.PublicKey.PublicKey.(*ecdh.PublicKey)
|
||||
priv := new(ecdh.PrivateKey)
|
||||
priv.PublicKey = *pub
|
||||
|
||||
buf := bytes.NewBuffer(data)
|
||||
d, _, err := readMPI(buf)
|
||||
|
@ -369,10 +502,47 @@ func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
|
|||
return
|
||||
}
|
||||
|
||||
pk.PrivateKey = &ecdsa.PrivateKey{
|
||||
PublicKey: *ecdsaPub,
|
||||
D: new(big.Int).SetBytes(d),
|
||||
priv.X = new(big.Int).SetBytes(d)
|
||||
pk.PrivateKey = priv
|
||||
pk.Encrypted = false
|
||||
pk.encryptedData = nil
|
||||
return nil
|
||||
}
|
||||
|
||||
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
|
||||
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
|
||||
ecdsaPriv := new(ecdsa.PrivateKey)
|
||||
ecdsaPriv.PublicKey = *ecdsaPub
|
||||
|
||||
buf := bytes.NewBuffer(data)
|
||||
d, _, err := readMPI(buf)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
ecdsaPriv.D = new(big.Int).SetBytes(d)
|
||||
pk.PrivateKey = ecdsaPriv
|
||||
pk.Encrypted = false
|
||||
pk.encryptedData = nil
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (pk *PrivateKey) parseEdDSAPrivateKey(data []byte) (err error) {
|
||||
eddsaPriv := new(EdDSAPrivateKey)
|
||||
eddsaPriv.PublicKey = pk.PublicKey
|
||||
|
||||
buf := bytes.NewBuffer(data)
|
||||
eddsaPriv.seed.bytes, eddsaPriv.seed.bitLength, err = readMPI(buf)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if bLen := len(eddsaPriv.seed.bytes); bLen != 32 { // 32 bytes private part of ed25519 key.
|
||||
return errors.UnsupportedError(fmt.Sprintf("Unexpected EdDSA private key length: %d", bLen))
|
||||
}
|
||||
|
||||
pk.PrivateKey = eddsaPriv
|
||||
pk.Encrypted = false
|
||||
pk.encryptedData = nil
|
||||
|
|
@ -10,7 +10,6 @@ import (
|
|||
"crypto/dsa"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/rsa"
|
||||
"crypto/sha1"
|
||||
_ "crypto/sha256"
|
||||
_ "crypto/sha512"
|
||||
|
@ -22,8 +21,13 @@ import (
|
|||
"strconv"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/elgamal"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/brainpool"
|
||||
"github.com/keybase/go-crypto/curve25519"
|
||||
"github.com/keybase/go-crypto/ed25519"
|
||||
"github.com/keybase/go-crypto/openpgp/ecdh"
|
||||
"github.com/keybase/go-crypto/openpgp/elgamal"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/rsa"
|
||||
)
|
||||
|
||||
var (
|
||||
|
@ -33,9 +37,19 @@ var (
|
|||
oidCurveP384 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x22}
|
||||
// NIST curve P-521
|
||||
oidCurveP521 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x23}
|
||||
// Brainpool curve P-256r1
|
||||
oidCurveP256r1 []byte = []byte{0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x07}
|
||||
// Brainpool curve P-384r1
|
||||
oidCurveP384r1 []byte = []byte{0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x0B}
|
||||
// Brainpool curve P-512r1
|
||||
oidCurveP512r1 []byte = []byte{0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x0D}
|
||||
// EdDSA
|
||||
oidEdDSA []byte = []byte{0x2B, 0x06, 0x01, 0x04, 0x01, 0xDA, 0x47, 0x0F, 0x01}
|
||||
// cv25519
|
||||
oidCurve25519 []byte = []byte{0x2B, 0x06, 0x01, 0x04, 0x01, 0x97, 0x55, 0x01, 0x05, 0x01}
|
||||
)
|
||||
|
||||
const maxOIDLength = 8
|
||||
const maxOIDLength = 10
|
||||
|
||||
// ecdsaKey stores the algorithm-specific fields for ECDSA keys.
|
||||
// as defined in RFC 6637, Section 9.
|
||||
|
@ -46,6 +60,38 @@ type ecdsaKey struct {
|
|||
p parsedMPI
|
||||
}
|
||||
|
||||
type edDSAkey struct {
|
||||
ecdsaKey
|
||||
}
|
||||
|
||||
func copyFrontFill(dst, src []byte, length int) int {
|
||||
if srcLen := len(src); srcLen < length {
|
||||
return copy(dst[length-srcLen:], src[:])
|
||||
} else {
|
||||
return copy(dst[:], src[:])
|
||||
}
|
||||
}
|
||||
|
||||
func (e *edDSAkey) Verify(payload []byte, r parsedMPI, s parsedMPI) bool {
|
||||
const halfSigSize = ed25519.SignatureSize / 2
|
||||
var sig [ed25519.SignatureSize]byte
|
||||
|
||||
// NOTE: The first byte is 0x40 - MPI header
|
||||
// TODO: Maybe clean the code up and use 0x40 as a header when
|
||||
// reading and keep only actual number in p field. Find out how
|
||||
// other MPIs are stored.
|
||||
key := e.p.bytes[1:]
|
||||
|
||||
// Note: it may happen that R + S do not form 64-byte signature buffer that
|
||||
// ed25519 expects, but because we copy it over to an array of exact size,
|
||||
// we will always pass correctly sized slice to Verify. Slice too short
|
||||
// would make ed25519 panic().
|
||||
copyFrontFill(sig[:halfSigSize], r.bytes, halfSigSize)
|
||||
copyFrontFill(sig[halfSigSize:], s.bytes, halfSigSize)
|
||||
|
||||
return ed25519.Verify(key, payload, sig[:])
|
||||
}
|
||||
|
||||
// parseOID reads the OID for the curve as defined in RFC 6637, Section 9.
|
||||
func parseOID(r io.Reader) (oid []byte, err error) {
|
||||
buf := make([]byte, maxOIDLength)
|
||||
|
@ -67,7 +113,7 @@ func (f *ecdsaKey) parse(r io.Reader) (err error) {
|
|||
return err
|
||||
}
|
||||
f.p.bytes, f.p.bitLength, err = readMPI(r)
|
||||
return
|
||||
return err
|
||||
}
|
||||
|
||||
func (f *ecdsaKey) serialize(w io.Writer) (err error) {
|
||||
|
@ -80,17 +126,34 @@ func (f *ecdsaKey) serialize(w io.Writer) (err error) {
|
|||
return writeMPIs(w, f.p)
|
||||
}
|
||||
|
||||
func getCurveByOid(oid []byte) elliptic.Curve {
|
||||
switch {
|
||||
case bytes.Equal(oid, oidCurveP256):
|
||||
return elliptic.P256()
|
||||
case bytes.Equal(oid, oidCurveP384):
|
||||
return elliptic.P384()
|
||||
case bytes.Equal(oid, oidCurveP521):
|
||||
return elliptic.P521()
|
||||
case bytes.Equal(oid, oidCurveP256r1):
|
||||
return brainpool.P256r1()
|
||||
case bytes.Equal(oid, oidCurveP384r1):
|
||||
return brainpool.P384r1()
|
||||
case bytes.Equal(oid, oidCurveP512r1):
|
||||
return brainpool.P512r1()
|
||||
case bytes.Equal(oid, oidCurve25519):
|
||||
return curve25519.Cv25519()
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) {
|
||||
var c elliptic.Curve
|
||||
if bytes.Equal(f.oid, oidCurveP256) {
|
||||
c = elliptic.P256()
|
||||
} else if bytes.Equal(f.oid, oidCurveP384) {
|
||||
c = elliptic.P384()
|
||||
} else if bytes.Equal(f.oid, oidCurveP521) {
|
||||
c = elliptic.P521()
|
||||
} else {
|
||||
var c = getCurveByOid(f.oid)
|
||||
// Curve25519 should not be used in ECDSA.
|
||||
if c == nil || bytes.Equal(f.oid, oidCurve25519) {
|
||||
return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid))
|
||||
}
|
||||
// Note: Unmarshal already checks if point is on curve.
|
||||
x, y := elliptic.Unmarshal(c, f.p.bytes)
|
||||
if x == nil {
|
||||
return nil, errors.UnsupportedError("failed to parse EC point")
|
||||
|
@ -98,6 +161,20 @@ func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) {
|
|||
return &ecdsa.PublicKey{Curve: c, X: x, Y: y}, nil
|
||||
}
|
||||
|
||||
func (f *ecdsaKey) newECDH() (*ecdh.PublicKey, error) {
|
||||
var c = getCurveByOid(f.oid)
|
||||
if c == nil {
|
||||
return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid))
|
||||
}
|
||||
// ecdh.Unmarshal handles unmarshaling for all curve types. It
|
||||
// also checks if point is on curve.
|
||||
x, y := ecdh.Unmarshal(c, f.p.bytes)
|
||||
if x == nil {
|
||||
return nil, errors.UnsupportedError("failed to parse EC point")
|
||||
}
|
||||
return &ecdh.PublicKey{Curve: c, X: x, Y: y}, nil
|
||||
}
|
||||
|
||||
func (f *ecdsaKey) byteLen() int {
|
||||
return 1 + len(f.oid) + 2 + len(f.p.bytes)
|
||||
}
|
||||
|
@ -163,6 +240,9 @@ type PublicKey struct {
|
|||
// RFC 6637 fields
|
||||
ec *ecdsaKey
|
||||
ecdh *ecdhKdf
|
||||
|
||||
// EdDSA fields (no RFC available), uses ecdsa scaffolding
|
||||
edk *edDSAkey
|
||||
}
|
||||
|
||||
// signingKey provides a convenient abstraction over signature verification
|
||||
|
@ -172,21 +252,28 @@ type signingKey interface {
|
|||
serializeWithoutHeaders(io.Writer) error
|
||||
}
|
||||
|
||||
func fromBig(n *big.Int) parsedMPI {
|
||||
func FromBig(n *big.Int) parsedMPI {
|
||||
return parsedMPI{
|
||||
bytes: n.Bytes(),
|
||||
bitLength: uint16(n.BitLen()),
|
||||
}
|
||||
}
|
||||
|
||||
func FromBytes(bytes []byte) parsedMPI {
|
||||
return parsedMPI{
|
||||
bytes: bytes,
|
||||
bitLength: uint16(8 * len(bytes)),
|
||||
}
|
||||
}
|
||||
|
||||
// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey.
|
||||
func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey {
|
||||
pk := &PublicKey{
|
||||
CreationTime: creationTime,
|
||||
PubKeyAlgo: PubKeyAlgoRSA,
|
||||
PublicKey: pub,
|
||||
n: fromBig(pub.N),
|
||||
e: fromBig(big.NewInt(int64(pub.E))),
|
||||
n: FromBig(pub.N),
|
||||
e: FromBig(big.NewInt(int64(pub.E))),
|
||||
}
|
||||
|
||||
pk.setFingerPrintAndKeyId()
|
||||
|
@ -199,25 +286,38 @@ func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey {
|
|||
CreationTime: creationTime,
|
||||
PubKeyAlgo: PubKeyAlgoDSA,
|
||||
PublicKey: pub,
|
||||
p: fromBig(pub.P),
|
||||
q: fromBig(pub.Q),
|
||||
g: fromBig(pub.G),
|
||||
y: fromBig(pub.Y),
|
||||
p: FromBig(pub.P),
|
||||
q: FromBig(pub.Q),
|
||||
g: FromBig(pub.G),
|
||||
y: FromBig(pub.Y),
|
||||
}
|
||||
|
||||
pk.setFingerPrintAndKeyId()
|
||||
return pk
|
||||
}
|
||||
|
||||
// check EdDSA public key material.
|
||||
// There is currently no RFC for it, but it doesn't mean it's not
|
||||
// implemented or in use.
|
||||
func (e *edDSAkey) check() error {
|
||||
if !bytes.Equal(e.oid, oidEdDSA) {
|
||||
return errors.UnsupportedError(fmt.Sprintf("Bad OID for EdDSA key: %v", e.oid))
|
||||
}
|
||||
if bLen := len(e.p.bytes); bLen != 33 { // 32 bytes for ed25519 key and 1 byte for 0x40 header
|
||||
return errors.UnsupportedError(fmt.Sprintf("Unexpected EdDSA public key length: %d", bLen))
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey.
|
||||
func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey {
|
||||
pk := &PublicKey{
|
||||
CreationTime: creationTime,
|
||||
PubKeyAlgo: PubKeyAlgoElGamal,
|
||||
PublicKey: pub,
|
||||
p: fromBig(pub.P),
|
||||
g: fromBig(pub.G),
|
||||
y: fromBig(pub.Y),
|
||||
p: FromBig(pub.P),
|
||||
g: FromBig(pub.G),
|
||||
y: FromBig(pub.Y),
|
||||
}
|
||||
|
||||
pk.setFingerPrintAndKeyId()
|
||||
|
@ -231,7 +331,6 @@ func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey
|
|||
PublicKey: pub,
|
||||
ec: new(ecdsaKey),
|
||||
}
|
||||
|
||||
switch pub.Curve {
|
||||
case elliptic.P256():
|
||||
pk.ec.oid = oidCurveP256
|
||||
|
@ -239,10 +338,13 @@ func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey
|
|||
pk.ec.oid = oidCurveP384
|
||||
case elliptic.P521():
|
||||
pk.ec.oid = oidCurveP521
|
||||
default:
|
||||
panic("unknown elliptic curve")
|
||||
case brainpool.P256r1():
|
||||
pk.ec.oid = oidCurveP256r1
|
||||
case brainpool.P384r1():
|
||||
pk.ec.oid = oidCurveP384r1
|
||||
case brainpool.P512r1():
|
||||
pk.ec.oid = oidCurveP512r1
|
||||
}
|
||||
|
||||
pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
|
||||
pk.ec.p.bitLength = uint16(8 * len(pk.ec.p.bytes))
|
||||
|
||||
|
@ -269,6 +371,12 @@ func (pk *PublicKey) parse(r io.Reader) (err error) {
|
|||
err = pk.parseDSA(r)
|
||||
case PubKeyAlgoElGamal:
|
||||
err = pk.parseElGamal(r)
|
||||
case PubKeyAlgoEdDSA:
|
||||
pk.edk = new(edDSAkey)
|
||||
if err = pk.edk.parse(r); err != nil {
|
||||
return err
|
||||
}
|
||||
err = pk.edk.check()
|
||||
case PubKeyAlgoECDSA:
|
||||
pk.ec = new(ecdsaKey)
|
||||
if err = pk.ec.parse(r); err != nil {
|
||||
|
@ -284,8 +392,7 @@ func (pk *PublicKey) parse(r io.Reader) (err error) {
|
|||
if err = pk.ecdh.parse(r); err != nil {
|
||||
return
|
||||
}
|
||||
// The ECDH key is stored in an ecdsa.PublicKey for convenience.
|
||||
pk.PublicKey, err = pk.ec.newECDSA()
|
||||
pk.PublicKey, err = pk.ec.newECDH()
|
||||
default:
|
||||
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
|
||||
}
|
||||
|
@ -318,7 +425,7 @@ func (pk *PublicKey) parseRSA(r io.Reader) (err error) {
|
|||
return
|
||||
}
|
||||
|
||||
if len(pk.e.bytes) > 3 {
|
||||
if len(pk.e.bytes) > 7 {
|
||||
err = errors.UnsupportedError("large public exponent")
|
||||
return
|
||||
}
|
||||
|
@ -328,7 +435,7 @@ func (pk *PublicKey) parseRSA(r io.Reader) (err error) {
|
|||
}
|
||||
for i := 0; i < len(pk.e.bytes); i++ {
|
||||
rsa.E <<= 8
|
||||
rsa.E |= int(pk.e.bytes[i])
|
||||
rsa.E |= int64(pk.e.bytes[i])
|
||||
}
|
||||
pk.PublicKey = rsa
|
||||
return
|
||||
|
@ -410,6 +517,8 @@ func (pk *PublicKey) SerializeSignaturePrefix(h io.Writer) {
|
|||
case PubKeyAlgoECDH:
|
||||
pLength += uint16(pk.ec.byteLen())
|
||||
pLength += uint16(pk.ecdh.byteLen())
|
||||
case PubKeyAlgoEdDSA:
|
||||
pLength += uint16(pk.edk.byteLen())
|
||||
default:
|
||||
panic("unknown public key algorithm")
|
||||
}
|
||||
|
@ -439,6 +548,8 @@ func (pk *PublicKey) Serialize(w io.Writer) (err error) {
|
|||
case PubKeyAlgoECDH:
|
||||
length += pk.ec.byteLen()
|
||||
length += pk.ecdh.byteLen()
|
||||
case PubKeyAlgoEdDSA:
|
||||
length += pk.edk.byteLen()
|
||||
default:
|
||||
panic("unknown public key algorithm")
|
||||
}
|
||||
|
@ -480,6 +591,8 @@ func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) {
|
|||
return writeMPIs(w, pk.p, pk.g, pk.y)
|
||||
case PubKeyAlgoECDSA:
|
||||
return pk.ec.serialize(w)
|
||||
case PubKeyAlgoEdDSA:
|
||||
return pk.edk.serialize(w)
|
||||
case PubKeyAlgoECDH:
|
||||
if err = pk.ec.serialize(w); err != nil {
|
||||
return
|
||||
|
@ -504,9 +617,18 @@ func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err erro
|
|||
signed.Write(sig.HashSuffix)
|
||||
hashBytes := signed.Sum(nil)
|
||||
|
||||
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
|
||||
return errors.SignatureError("hash tag doesn't match")
|
||||
}
|
||||
// NOTE(maxtaco) 2016-08-22
|
||||
//
|
||||
// We used to do this:
|
||||
//
|
||||
// if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
|
||||
// return errors.SignatureError("hash tag doesn't match")
|
||||
// }
|
||||
//
|
||||
// But don't do anything in this case. Some GPGs generate bad
|
||||
// 2-byte hash prefixes, but GPG also doesn't seem to care on
|
||||
// import. See BrentMaxwell's key. I think it's safe to disable
|
||||
// this check!
|
||||
|
||||
if pk.PubKeyAlgo != sig.PubKeyAlgo {
|
||||
return errors.InvalidArgumentError("public key and signature use different algorithms")
|
||||
|
@ -537,9 +659,15 @@ func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err erro
|
|||
return errors.SignatureError("ECDSA verification failure")
|
||||
}
|
||||
return nil
|
||||
case PubKeyAlgoEdDSA:
|
||||
if !pk.edk.Verify(hashBytes, sig.EdDSASigR, sig.EdDSASigS) {
|
||||
return errors.SignatureError("EdDSA verification failure")
|
||||
}
|
||||
return nil
|
||||
default:
|
||||
return errors.SignatureError("Unsupported public key algorithm used in signature")
|
||||
}
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
|
||||
|
@ -584,6 +712,7 @@ func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err
|
|||
default:
|
||||
panic("shouldn't happen")
|
||||
}
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
// keySignatureHash returns a Hash of the message that needs to be signed for
|
||||
|
@ -594,12 +723,18 @@ func keySignatureHash(pk, signed signingKey, hashFunc crypto.Hash) (h hash.Hash,
|
|||
}
|
||||
h = hashFunc.New()
|
||||
|
||||
updateKeySignatureHash(pk, signed, h)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// updateKeySignatureHash does the actual hash updates for keySignatureHash.
|
||||
func updateKeySignatureHash(pk, signed signingKey, h hash.Hash) {
|
||||
// RFC 4880, section 5.2.4
|
||||
pk.SerializeSignaturePrefix(h)
|
||||
pk.serializeWithoutHeaders(h)
|
||||
signed.SerializeSignaturePrefix(h)
|
||||
signed.serializeWithoutHeaders(h)
|
||||
return
|
||||
}
|
||||
|
||||
// VerifyKeySignature returns nil iff sig is a valid signature, made by this
|
||||
|
@ -614,6 +749,19 @@ func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error
|
|||
}
|
||||
|
||||
if sig.FlagSign {
|
||||
|
||||
// BUG(maxtaco)
|
||||
//
|
||||
// We should check for more than FlagsSign here, because if
|
||||
// you read keys.go, we can sometimes use signing subkeys even if they're
|
||||
// not explicitly flagged as such. However, so doing fails lots of currently
|
||||
// working tests, so I'm not going to do much here.
|
||||
//
|
||||
// In other words, we should have this disjunction in the condition above:
|
||||
//
|
||||
// || (!sig.FlagsValid && pk.PubKeyAlgo.CanSign()) {
|
||||
//
|
||||
|
||||
// Signing subkeys must be cross-signed. See
|
||||
// https://www.gnupg.org/faq/subkey-cross-certify.html.
|
||||
if sig.EmbeddedSignature == nil {
|
||||
|
@ -648,14 +796,27 @@ func keyRevocationHash(pk signingKey, hashFunc crypto.Hash) (h hash.Hash, err er
|
|||
|
||||
// VerifyRevocationSignature returns nil iff sig is a valid signature, made by this
|
||||
// public key.
|
||||
func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) {
|
||||
h, err := keyRevocationHash(pk, sig.Hash)
|
||||
func (pk *PublicKey) VerifyRevocationSignature(revokedKey *PublicKey, sig *Signature) (err error) {
|
||||
h, err := keyRevocationHash(revokedKey, sig.Hash)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return pk.VerifySignature(h, sig)
|
||||
}
|
||||
|
||||
type teeHash struct {
|
||||
h hash.Hash
|
||||
}
|
||||
|
||||
func (t teeHash) Write(b []byte) (n int, err error) {
|
||||
fmt.Printf("hash -> %s %+v\n", string(b), b)
|
||||
return t.h.Write(b)
|
||||
}
|
||||
func (t teeHash) Sum(b []byte) []byte { return t.h.Sum(b) }
|
||||
func (t teeHash) Reset() { t.h.Reset() }
|
||||
func (t teeHash) Size() int { return t.h.Size() }
|
||||
func (t teeHash) BlockSize() int { return t.h.BlockSize() }
|
||||
|
||||
// userIdSignatureHash returns a Hash of the message that needs to be signed
|
||||
// to assert that pk is a valid key for id.
|
||||
func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
|
||||
|
@ -664,6 +825,14 @@ func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash
|
|||
}
|
||||
h = hashFunc.New()
|
||||
|
||||
updateUserIdSignatureHash(id, pk, h)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// updateUserIdSignatureHash does the actual hash updates for
|
||||
// userIdSignatureHash.
|
||||
func updateUserIdSignatureHash(id string, pk *PublicKey, h hash.Hash) {
|
||||
// RFC 4880, section 5.2.4
|
||||
pk.SerializeSignaturePrefix(h)
|
||||
pk.serializeWithoutHeaders(h)
|
||||
|
@ -732,7 +901,9 @@ func writeMPIs(w io.Writer, mpis ...parsedMPI) (err error) {
|
|||
return
|
||||
}
|
||||
|
||||
// BitLength returns the bit length for the given public key.
|
||||
// BitLength returns the bit length for the given public key. Used for
|
||||
// displaying key information, actual buffers and BigInts inside may
|
||||
// have non-matching different size if the key is invalid.
|
||||
func (pk *PublicKey) BitLength() (bitLength uint16, err error) {
|
||||
switch pk.PubKeyAlgo {
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
|
||||
|
@ -741,6 +912,17 @@ func (pk *PublicKey) BitLength() (bitLength uint16, err error) {
|
|||
bitLength = pk.p.bitLength
|
||||
case PubKeyAlgoElGamal:
|
||||
bitLength = pk.p.bitLength
|
||||
case PubKeyAlgoECDH:
|
||||
ecdhPublicKey := pk.PublicKey.(*ecdh.PublicKey)
|
||||
bitLength = uint16(ecdhPublicKey.Curve.Params().BitSize)
|
||||
case PubKeyAlgoECDSA:
|
||||
ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey)
|
||||
bitLength = uint16(ecdsaPublicKey.Curve.Params().BitSize)
|
||||
case PubKeyAlgoEdDSA:
|
||||
// EdDSA only support ed25519 curves right now, just return
|
||||
// the length. Also, we don't have any PublicKey.Curve object
|
||||
// to look the size up from.
|
||||
bitLength = 256
|
||||
default:
|
||||
err = errors.InvalidArgumentError("bad public-key algorithm")
|
||||
}
|
|
@ -7,7 +7,6 @@ package packet
|
|||
import (
|
||||
"crypto"
|
||||
"crypto/md5"
|
||||
"crypto/rsa"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"hash"
|
||||
|
@ -16,7 +15,8 @@ import (
|
|||
"strconv"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/rsa"
|
||||
)
|
||||
|
||||
// PublicKeyV3 represents older, version 3 public keys. These keys are less secure and
|
||||
|
@ -42,8 +42,8 @@ func newRSAPublicKeyV3(creationTime time.Time, pub *rsa.PublicKey) *PublicKeyV3
|
|||
pk := &PublicKeyV3{
|
||||
CreationTime: creationTime,
|
||||
PublicKey: pub,
|
||||
n: fromBig(pub.N),
|
||||
e: fromBig(big.NewInt(int64(pub.E))),
|
||||
n: FromBig(pub.N),
|
||||
e: FromBig(big.NewInt(int64(pub.E))),
|
||||
}
|
||||
|
||||
pk.setFingerPrintAndKeyId()
|
||||
|
@ -100,14 +100,14 @@ func (pk *PublicKeyV3) parseRSA(r io.Reader) (err error) {
|
|||
if len(pk.n.bytes) < 8 {
|
||||
return errors.StructuralError("v3 public key modulus is too short")
|
||||
}
|
||||
if len(pk.e.bytes) > 3 {
|
||||
if len(pk.e.bytes) > 7 {
|
||||
err = errors.UnsupportedError("large public exponent")
|
||||
return
|
||||
}
|
||||
rsa := &rsa.PublicKey{N: new(big.Int).SetBytes(pk.n.bytes)}
|
||||
for i := 0; i < len(pk.e.bytes); i++ {
|
||||
rsa.E <<= 8
|
||||
rsa.E |= int(pk.e.bytes[i])
|
||||
rsa.E |= int64(pk.e.bytes[i])
|
||||
}
|
||||
pk.PublicKey = rsa
|
||||
return
|
||||
|
@ -216,6 +216,7 @@ func (pk *PublicKeyV3) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (er
|
|||
// V3 public keys only support RSA.
|
||||
panic("shouldn't happen")
|
||||
}
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
|
|
@ -5,8 +5,9 @@
|
|||
package packet
|
||||
|
||||
import (
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"io"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// Reader reads packets from an io.Reader and allows packets to be 'unread' so
|
||||
|
@ -46,7 +47,6 @@ func (r *Reader) Next() (p Packet, err error) {
|
|||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
return nil, io.EOF
|
||||
}
|
||||
|
|
@ -9,16 +9,15 @@ import (
|
|||
"crypto"
|
||||
"crypto/dsa"
|
||||
"crypto/ecdsa"
|
||||
"encoding/asn1"
|
||||
"encoding/binary"
|
||||
"hash"
|
||||
"io"
|
||||
"math/big"
|
||||
"strconv"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/rsa"
|
||||
)
|
||||
|
||||
const (
|
||||
|
@ -29,6 +28,29 @@ const (
|
|||
KeyFlagEncryptStorage
|
||||
)
|
||||
|
||||
// Signer can be implemented by application code to do actual signing.
|
||||
type Signer interface {
|
||||
hash.Hash
|
||||
Sign(sig *Signature) error
|
||||
KeyId() uint64
|
||||
PublicKeyAlgo() PublicKeyAlgorithm
|
||||
}
|
||||
|
||||
// RevocationKey represents designated revoker packet. See RFC 4880
|
||||
// section 5.2.3.15 for details.
|
||||
type RevocationKey struct {
|
||||
Class byte
|
||||
PublicKeyAlgo PublicKeyAlgorithm
|
||||
Fingerprint []byte
|
||||
}
|
||||
|
||||
// KeyFlagBits holds boolean whether any usage flags were provided in
|
||||
// the signature and BitField with KeyFlag* flags.
|
||||
type KeyFlagBits struct {
|
||||
Valid bool
|
||||
BitField byte
|
||||
}
|
||||
|
||||
// Signature represents a signature. See RFC 4880, section 5.2.
|
||||
type Signature struct {
|
||||
SigType SignatureType
|
||||
|
@ -45,6 +67,7 @@ type Signature struct {
|
|||
RSASignature parsedMPI
|
||||
DSASigR, DSASigS parsedMPI
|
||||
ECDSASigR, ECDSASigS parsedMPI
|
||||
EdDSASigR, EdDSASigS parsedMPI
|
||||
|
||||
// rawSubpackets contains the unparsed subpackets, in order.
|
||||
rawSubpackets []outputSubpacket
|
||||
|
@ -54,8 +77,10 @@ type Signature struct {
|
|||
|
||||
SigLifetimeSecs, KeyLifetimeSecs *uint32
|
||||
PreferredSymmetric, PreferredHash, PreferredCompression []uint8
|
||||
PreferredKeyServer string
|
||||
IssuerKeyId *uint64
|
||||
IsPrimaryId *bool
|
||||
IssuerFingerprint []byte
|
||||
|
||||
// FlagsValid is set if any flags were given. See RFC 4880, section
|
||||
// 5.2.3.21 for details.
|
||||
|
@ -67,6 +92,12 @@ type Signature struct {
|
|||
RevocationReason *uint8
|
||||
RevocationReasonText string
|
||||
|
||||
// PolicyURI is optional. See RFC 4880, Section 5.2.3.20 for details
|
||||
PolicyURI string
|
||||
|
||||
// Regex is a regex that can match a PGP UID. See RFC 4880, 5.2.3.14 for details
|
||||
Regex string
|
||||
|
||||
// MDC is set if this signature has a feature packet that indicates
|
||||
// support for MDC subpackets.
|
||||
MDC bool
|
||||
|
@ -76,6 +107,16 @@ type Signature struct {
|
|||
// subkey as their own.
|
||||
EmbeddedSignature *Signature
|
||||
|
||||
// StubbedOutCriticalError is not fail-stop, since it shouldn't break key parsing
|
||||
// when appearing in WoT-style cross signatures. But it should prevent a signature
|
||||
// from being applied to a primary or subkey.
|
||||
StubbedOutCriticalError error
|
||||
|
||||
// DesignaterRevoker will be present if this signature certifies a
|
||||
// designated revoking key id (3rd party key that can sign
|
||||
// revocation for this key).
|
||||
DesignatedRevoker *RevocationKey
|
||||
|
||||
outSubpackets []outputSubpacket
|
||||
}
|
||||
|
||||
|
@ -98,7 +139,7 @@ func (sig *Signature) parse(r io.Reader) (err error) {
|
|||
sig.SigType = SignatureType(buf[0])
|
||||
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
|
||||
switch sig.PubKeyAlgo {
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA, PubKeyAlgoEdDSA:
|
||||
default:
|
||||
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
|
||||
return
|
||||
|
@ -162,6 +203,11 @@ func (sig *Signature) parse(r io.Reader) (err error) {
|
|||
if err == nil {
|
||||
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
|
||||
}
|
||||
case PubKeyAlgoEdDSA:
|
||||
sig.EdDSASigR.bytes, sig.EdDSASigR.bitLength, err = readMPI(r)
|
||||
if err == nil {
|
||||
sig.EdDSASigS.bytes, sig.EdDSASigS.bitLength, err = readMPI(r)
|
||||
}
|
||||
case PubKeyAlgoECDSA:
|
||||
sig.ECDSASigR.bytes, sig.ECDSASigR.bitLength, err = readMPI(r)
|
||||
if err == nil {
|
||||
|
@ -195,16 +241,21 @@ type signatureSubpacketType uint8
|
|||
const (
|
||||
creationTimeSubpacket signatureSubpacketType = 2
|
||||
signatureExpirationSubpacket signatureSubpacketType = 3
|
||||
regularExpressionSubpacket signatureSubpacketType = 6
|
||||
keyExpirationSubpacket signatureSubpacketType = 9
|
||||
prefSymmetricAlgosSubpacket signatureSubpacketType = 11
|
||||
revocationKey signatureSubpacketType = 12
|
||||
issuerSubpacket signatureSubpacketType = 16
|
||||
prefHashAlgosSubpacket signatureSubpacketType = 21
|
||||
prefCompressionSubpacket signatureSubpacketType = 22
|
||||
prefKeyServerSubpacket signatureSubpacketType = 24
|
||||
primaryUserIdSubpacket signatureSubpacketType = 25
|
||||
policyURISubpacket signatureSubpacketType = 26
|
||||
keyFlagsSubpacket signatureSubpacketType = 27
|
||||
reasonForRevocationSubpacket signatureSubpacketType = 29
|
||||
featuresSubpacket signatureSubpacketType = 30
|
||||
embeddedSignatureSubpacket signatureSubpacketType = 32
|
||||
issuerFingerprint signatureSubpacketType = 33
|
||||
)
|
||||
|
||||
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1.
|
||||
|
@ -382,6 +433,32 @@ func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (r
|
|||
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding {
|
||||
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType)))
|
||||
}
|
||||
case policyURISubpacket:
|
||||
// See RFC 4880, Section 5.2.3.20
|
||||
sig.PolicyURI = string(subpacket[:])
|
||||
case regularExpressionSubpacket:
|
||||
sig.Regex = string(subpacket[:])
|
||||
if isCritical {
|
||||
sig.StubbedOutCriticalError = errors.UnsupportedError("regex support is stubbed out")
|
||||
}
|
||||
case prefKeyServerSubpacket:
|
||||
sig.PreferredKeyServer = string(subpacket[:])
|
||||
case issuerFingerprint:
|
||||
// The first byte is how many bytes the fingerprint is, but we'll just
|
||||
// read until the end of the subpacket, so we'll ignore it.
|
||||
sig.IssuerFingerprint = append([]byte{}, subpacket[1:]...)
|
||||
case revocationKey:
|
||||
// Authorizes the specified key to issue revocation signatures
|
||||
// for a key.
|
||||
|
||||
// TODO: Class octet must have bit 0x80 set. If the bit 0x40
|
||||
// is set, then this means that the revocation information is
|
||||
// sensitive.
|
||||
sig.DesignatedRevoker = &RevocationKey{
|
||||
Class: subpacket[0],
|
||||
PublicKeyAlgo: PublicKeyAlgorithm(subpacket[1]),
|
||||
Fingerprint: append([]byte{}, subpacket[2:]...),
|
||||
}
|
||||
default:
|
||||
if isCritical {
|
||||
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType)))
|
||||
|
@ -464,6 +541,26 @@ func (sig *Signature) KeyExpired(currentTime time.Time) bool {
|
|||
return currentTime.After(expiry)
|
||||
}
|
||||
|
||||
// ExpiresBeforeOther checks if other signature has expiration at
|
||||
// later date than sig.
|
||||
func (sig *Signature) ExpiresBeforeOther(other *Signature) bool {
|
||||
if sig.KeyLifetimeSecs == nil {
|
||||
// This sig never expires, or has infinitely long expiration
|
||||
// time.
|
||||
return false
|
||||
} else if other.KeyLifetimeSecs == nil {
|
||||
// This sig expires at some non-infinite point, but the other
|
||||
// sig never expires.
|
||||
return true
|
||||
}
|
||||
|
||||
getExpiryDate := func(s *Signature) time.Time {
|
||||
return s.CreationTime.Add(time.Duration(*s.KeyLifetimeSecs) * time.Second)
|
||||
}
|
||||
|
||||
return getExpiryDate(other).After(getExpiryDate(sig))
|
||||
}
|
||||
|
||||
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing.
|
||||
func (sig *Signature) buildHashSuffix() (err error) {
|
||||
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
|
||||
|
@ -509,16 +606,27 @@ func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) {
|
|||
// On success, the signature is stored in sig. Call Serialize to write it out.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) {
|
||||
signer, hashIsSigner := h.(Signer)
|
||||
|
||||
if !hashIsSigner && (priv == nil || priv.PrivateKey == nil) {
|
||||
err = errors.InvalidArgumentError("attempting to sign with nil PrivateKey")
|
||||
return
|
||||
}
|
||||
|
||||
sig.outSubpackets = sig.buildSubpackets()
|
||||
digest, err := sig.signPrepareHash(h)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
if hashIsSigner {
|
||||
err = signer.Sign(sig)
|
||||
return
|
||||
}
|
||||
|
||||
switch priv.PubKeyAlgo {
|
||||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
|
||||
// supports both *rsa.PrivateKey and crypto.Signer
|
||||
sig.RSASignature.bytes, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
|
||||
sig.RSASignature.bytes, err = rsa.SignPKCS1v15(config.Random(), priv.PrivateKey.(*rsa.PrivateKey), sig.Hash, digest)
|
||||
sig.RSASignature.bitLength = uint16(8 * len(sig.RSASignature.bytes))
|
||||
case PubKeyAlgoDSA:
|
||||
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey)
|
||||
|
@ -536,20 +644,16 @@ func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err e
|
|||
sig.DSASigS.bitLength = uint16(8 * len(sig.DSASigS.bytes))
|
||||
}
|
||||
case PubKeyAlgoECDSA:
|
||||
var r, s *big.Int
|
||||
if pk, ok := priv.PrivateKey.(*ecdsa.PrivateKey); ok {
|
||||
// direct support, avoid asn1 wrapping/unwrapping
|
||||
r, s, err = ecdsa.Sign(config.Random(), pk, digest)
|
||||
} else {
|
||||
var b []byte
|
||||
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, nil)
|
||||
if err == nil {
|
||||
r, s, err = unwrapECDSASig(b)
|
||||
}
|
||||
}
|
||||
r, s, err := ecdsa.Sign(config.Random(), priv.PrivateKey.(*ecdsa.PrivateKey), digest)
|
||||
if err == nil {
|
||||
sig.ECDSASigR = fromBig(r)
|
||||
sig.ECDSASigS = fromBig(s)
|
||||
sig.ECDSASigR = FromBig(r)
|
||||
sig.ECDSASigS = FromBig(s)
|
||||
}
|
||||
case PubKeyAlgoEdDSA:
|
||||
r, s, err := priv.PrivateKey.(*EdDSAPrivateKey).Sign(digest)
|
||||
if err == nil {
|
||||
sig.EdDSASigR = FromBytes(r)
|
||||
sig.EdDSASigS = FromBytes(s)
|
||||
}
|
||||
default:
|
||||
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
|
||||
|
@ -558,19 +662,6 @@ func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err e
|
|||
return
|
||||
}
|
||||
|
||||
// unwrapECDSASig parses the two integer components of an ASN.1-encoded ECDSA
|
||||
// signature.
|
||||
func unwrapECDSASig(b []byte) (r, s *big.Int, err error) {
|
||||
var ecsdaSig struct {
|
||||
R, S *big.Int
|
||||
}
|
||||
_, err = asn1.Unmarshal(b, &ecsdaSig)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
return ecsdaSig.R, ecsdaSig.S, nil
|
||||
}
|
||||
|
||||
// SignUserId computes a signature from priv, asserting that pub is a valid
|
||||
// key for the identity id. On success, the signature is stored in sig. Call
|
||||
// Serialize to write it out.
|
||||
|
@ -583,6 +674,16 @@ func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, co
|
|||
return sig.Sign(h, priv, config)
|
||||
}
|
||||
|
||||
// SignUserIdWithSigner computes a signature from priv, asserting that pub is a
|
||||
// valid key for the identity id. On success, the signature is stored in sig.
|
||||
// Call Serialize to write it out.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func (sig *Signature) SignUserIdWithSigner(id string, pub *PublicKey, s Signer, config *Config) error {
|
||||
updateUserIdSignatureHash(id, pub, s)
|
||||
|
||||
return sig.Sign(s, nil, config)
|
||||
}
|
||||
|
||||
// SignKey computes a signature from priv, asserting that pub is a subkey. On
|
||||
// success, the signature is stored in sig. Call Serialize to write it out.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
|
@ -594,13 +695,25 @@ func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config)
|
|||
return sig.Sign(h, priv, config)
|
||||
}
|
||||
|
||||
// SignKeyWithSigner computes a signature using s, asserting that
|
||||
// signeePubKey is a subkey. On success, the signature is stored in sig. Call
|
||||
// Serialize to write it out. If config is nil, sensible defaults will be used.
|
||||
func (sig *Signature) SignKeyWithSigner(signeePubKey *PublicKey, signerPubKey *PublicKey, s Signer, config *Config) error {
|
||||
updateKeySignatureHash(signerPubKey, signeePubKey, s)
|
||||
|
||||
return sig.Sign(s, nil, config)
|
||||
}
|
||||
|
||||
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
|
||||
// called first.
|
||||
func (sig *Signature) Serialize(w io.Writer) (err error) {
|
||||
if len(sig.outSubpackets) == 0 {
|
||||
sig.outSubpackets = sig.rawSubpackets
|
||||
}
|
||||
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil && sig.ECDSASigR.bytes == nil {
|
||||
if sig.RSASignature.bytes == nil &&
|
||||
sig.DSASigR.bytes == nil &&
|
||||
sig.ECDSASigR.bytes == nil &&
|
||||
sig.EdDSASigR.bytes == nil {
|
||||
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
|
||||
}
|
||||
|
||||
|
@ -611,6 +724,9 @@ func (sig *Signature) Serialize(w io.Writer) (err error) {
|
|||
case PubKeyAlgoDSA:
|
||||
sigLength = 2 + len(sig.DSASigR.bytes)
|
||||
sigLength += 2 + len(sig.DSASigS.bytes)
|
||||
case PubKeyAlgoEdDSA:
|
||||
sigLength = 2 + len(sig.EdDSASigR.bytes)
|
||||
sigLength += 2 + len(sig.EdDSASigS.bytes)
|
||||
case PubKeyAlgoECDSA:
|
||||
sigLength = 2 + len(sig.ECDSASigR.bytes)
|
||||
sigLength += 2 + len(sig.ECDSASigS.bytes)
|
||||
|
@ -651,6 +767,8 @@ func (sig *Signature) Serialize(w io.Writer) (err error) {
|
|||
err = writeMPIs(w, sig.RSASignature)
|
||||
case PubKeyAlgoDSA:
|
||||
err = writeMPIs(w, sig.DSASigR, sig.DSASigS)
|
||||
case PubKeyAlgoEdDSA:
|
||||
err = writeMPIs(w, sig.EdDSASigR, sig.EdDSASigS)
|
||||
case PubKeyAlgoECDSA:
|
||||
err = writeMPIs(w, sig.ECDSASigR, sig.ECDSASigS)
|
||||
default:
|
||||
|
@ -687,20 +805,7 @@ func (sig *Signature) buildSubpackets() (subpackets []outputSubpacket) {
|
|||
// Key flags may only appear in self-signatures or certification signatures.
|
||||
|
||||
if sig.FlagsValid {
|
||||
var flags byte
|
||||
if sig.FlagCertify {
|
||||
flags |= KeyFlagCertify
|
||||
}
|
||||
if sig.FlagSign {
|
||||
flags |= KeyFlagSign
|
||||
}
|
||||
if sig.FlagEncryptCommunications {
|
||||
flags |= KeyFlagEncryptCommunications
|
||||
}
|
||||
if sig.FlagEncryptStorage {
|
||||
flags |= KeyFlagEncryptStorage
|
||||
}
|
||||
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, false, []byte{flags}})
|
||||
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, false, []byte{sig.GetKeyFlags().BitField}})
|
||||
}
|
||||
|
||||
// The following subpackets may only appear in self-signatures
|
||||
|
@ -729,3 +834,47 @@ func (sig *Signature) buildSubpackets() (subpackets []outputSubpacket) {
|
|||
|
||||
return
|
||||
}
|
||||
|
||||
func (sig *Signature) GetKeyFlags() (ret KeyFlagBits) {
|
||||
if !sig.FlagsValid {
|
||||
return ret
|
||||
}
|
||||
|
||||
ret.Valid = true
|
||||
if sig.FlagCertify {
|
||||
ret.BitField |= KeyFlagCertify
|
||||
}
|
||||
if sig.FlagSign {
|
||||
ret.BitField |= KeyFlagSign
|
||||
}
|
||||
if sig.FlagEncryptCommunications {
|
||||
ret.BitField |= KeyFlagEncryptCommunications
|
||||
}
|
||||
if sig.FlagEncryptStorage {
|
||||
ret.BitField |= KeyFlagEncryptStorage
|
||||
}
|
||||
return ret
|
||||
}
|
||||
|
||||
func (f *KeyFlagBits) HasFlagCertify() bool {
|
||||
return f.BitField&KeyFlagCertify != 0
|
||||
}
|
||||
|
||||
func (f *KeyFlagBits) HasFlagSign() bool {
|
||||
return f.BitField&KeyFlagSign != 0
|
||||
}
|
||||
|
||||
func (f *KeyFlagBits) HasFlagEncryptCommunications() bool {
|
||||
return f.BitField&KeyFlagEncryptCommunications != 0
|
||||
}
|
||||
|
||||
func (f *KeyFlagBits) HasFlagEncryptStorage() bool {
|
||||
return f.BitField&KeyFlagEncryptStorage != 0
|
||||
}
|
||||
|
||||
func (f *KeyFlagBits) Merge(other KeyFlagBits) {
|
||||
if other.Valid {
|
||||
f.Valid = true
|
||||
f.BitField |= other.BitField
|
||||
}
|
||||
}
|
|
@ -12,8 +12,8 @@ import (
|
|||
"strconv"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
)
|
||||
|
||||
// SignatureV3 represents older version 3 signatures. These signatures are less secure
|
|
@ -10,8 +10,8 @@ import (
|
|||
"io"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
)
|
||||
|
||||
// This is the largest session key that we'll support. Since no 512-bit cipher
|
||||
|
@ -48,6 +48,9 @@ func (ske *SymmetricKeyEncrypted) parse(r io.Reader) error {
|
|||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if ske.s2k == nil {
|
||||
return errors.UnsupportedError("can't use dummy S2K for symmetric key encryption")
|
||||
}
|
||||
|
||||
encryptedKey := make([]byte, maxSessionKeySizeInBytes)
|
||||
// The session key may follow. We just have to try and read to find
|
|
@ -8,10 +8,11 @@ import (
|
|||
"crypto/cipher"
|
||||
"crypto/sha1"
|
||||
"crypto/subtle"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"hash"
|
||||
"io"
|
||||
"strconv"
|
||||
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// SymmetricallyEncrypted represents a symmetrically encrypted byte string. The
|
7
vendor/github.com/keybase/go-crypto/openpgp/patch.sh
generated
vendored
Normal file
7
vendor/github.com/keybase/go-crypto/openpgp/patch.sh
generated
vendored
Normal file
|
@ -0,0 +1,7 @@
|
|||
#!/bin/sh
|
||||
|
||||
patch < sig-v3.patch
|
||||
patch < s2k-gnu-dummy.patch
|
||||
find . -type f -name '*.go' -exec sed -i'' -e 's/golang.org\/x\/crypto\/openpgp/github.com\/keybase\/go-crypto\/openpgp/' {} \;
|
||||
find . -type f -name '*.go-e' -exec rm {} \;
|
||||
go test ./...
|
|
@ -3,18 +3,19 @@
|
|||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package openpgp implements high level operations on OpenPGP messages.
|
||||
package openpgp // import "golang.org/x/crypto/openpgp"
|
||||
package openpgp // import "github.com/keybase/go-crypto/openpgp"
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/hmac"
|
||||
_ "crypto/sha256"
|
||||
"hash"
|
||||
"io"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/crypto/openpgp/armor"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/packet"
|
||||
"github.com/keybase/go-crypto/openpgp/armor"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/packet"
|
||||
)
|
||||
|
||||
// SignatureType is the armor type for a PGP signature.
|
||||
|
@ -50,7 +51,7 @@ type MessageDetails struct {
|
|||
// If IsSigned is true and SignedBy is non-zero then the signature will
|
||||
// be verified as UnverifiedBody is read. The signature cannot be
|
||||
// checked until the whole of UnverifiedBody is read so UnverifiedBody
|
||||
// must be consumed until EOF before the data can be trusted. Even if a
|
||||
// must be consumed until EOF before the data can trusted. Even if a
|
||||
// message isn't signed (or the signer is unknown) the data may contain
|
||||
// an authentication code that is only checked once UnverifiedBody has
|
||||
// been consumed. Once EOF has been seen, the following fields are
|
||||
|
@ -113,7 +114,7 @@ ParsePackets:
|
|||
// This packet contains the decryption key encrypted to a public key.
|
||||
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
|
||||
switch p.Algo {
|
||||
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal:
|
||||
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH:
|
||||
break
|
||||
default:
|
||||
continue
|
||||
|
@ -122,7 +123,7 @@ ParsePackets:
|
|||
if p.KeyId == 0 {
|
||||
keys = keyring.DecryptionKeys()
|
||||
} else {
|
||||
keys = keyring.KeysById(p.KeyId)
|
||||
keys = keyring.KeysById(p.KeyId, nil)
|
||||
}
|
||||
for _, k := range keys {
|
||||
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
|
||||
|
@ -255,7 +256,7 @@ FindLiteralData:
|
|||
|
||||
md.IsSigned = true
|
||||
md.SignedByKeyId = p.KeyId
|
||||
keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign)
|
||||
keys := keyring.KeysByIdUsage(p.KeyId, nil, packet.KeyFlagSign)
|
||||
if len(keys) > 0 {
|
||||
md.SignedBy = &keys[0]
|
||||
}
|
||||
|
@ -336,7 +337,16 @@ func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
|
|||
|
||||
var ok bool
|
||||
if scr.md.Signature, ok = p.(*packet.Signature); ok {
|
||||
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
|
||||
var err error
|
||||
if fingerprint := scr.md.Signature.IssuerFingerprint; fingerprint != nil {
|
||||
if !hmac.Equal(fingerprint, scr.md.SignedBy.PublicKey.Fingerprint[:]) {
|
||||
err = errors.StructuralError("bad key fingerprint")
|
||||
}
|
||||
}
|
||||
if err == nil {
|
||||
err = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
|
||||
}
|
||||
scr.md.SignatureError = err
|
||||
} else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok {
|
||||
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3)
|
||||
} else {
|
||||
|
@ -361,7 +371,13 @@ func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
|
|||
// returns the signer if the signature is valid. If the signer isn't known,
|
||||
// ErrUnknownIssuer is returned.
|
||||
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
|
||||
signer, _, err = checkDetachedSignature(keyring, signed, signature)
|
||||
return signer, err
|
||||
}
|
||||
|
||||
func checkDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, issuer *uint64, err error) {
|
||||
var issuerKeyId uint64
|
||||
var issuerFingerprint []byte
|
||||
var hashFunc crypto.Hash
|
||||
var sigType packet.SignatureType
|
||||
var keys []Key
|
||||
|
@ -371,29 +387,30 @@ func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signe
|
|||
for {
|
||||
p, err = packets.Next()
|
||||
if err == io.EOF {
|
||||
return nil, errors.ErrUnknownIssuer
|
||||
return nil, nil, errors.ErrUnknownIssuer
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
switch sig := p.(type) {
|
||||
case *packet.Signature:
|
||||
if sig.IssuerKeyId == nil {
|
||||
return nil, errors.StructuralError("signature doesn't have an issuer")
|
||||
return nil, nil, errors.StructuralError("signature doesn't have an issuer")
|
||||
}
|
||||
issuerKeyId = *sig.IssuerKeyId
|
||||
hashFunc = sig.Hash
|
||||
sigType = sig.SigType
|
||||
issuerFingerprint = sig.IssuerFingerprint
|
||||
case *packet.SignatureV3:
|
||||
issuerKeyId = sig.IssuerKeyId
|
||||
hashFunc = sig.Hash
|
||||
sigType = sig.SigType
|
||||
default:
|
||||
return nil, errors.StructuralError("non signature packet found")
|
||||
return nil, nil, errors.StructuralError("non signature packet found")
|
||||
}
|
||||
|
||||
keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign)
|
||||
keys = keyring.KeysByIdUsage(issuerKeyId, issuerFingerprint, packet.KeyFlagSign)
|
||||
if len(keys) > 0 {
|
||||
break
|
||||
}
|
||||
|
@ -405,11 +422,11 @@ func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signe
|
|||
|
||||
h, wrappedHash, err := hashForSignature(hashFunc, sigType)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
for _, key := range keys {
|
||||
|
@ -423,20 +440,24 @@ func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signe
|
|||
}
|
||||
|
||||
if err == nil {
|
||||
return key.Entity, nil
|
||||
return key.Entity, &issuerKeyId, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
// CheckArmoredDetachedSignature performs the same actions as
|
||||
// CheckDetachedSignature but expects the signature to be armored.
|
||||
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
|
||||
signer, _, err = checkArmoredDetachedSignature(keyring, signed, signature)
|
||||
return signer, err
|
||||
}
|
||||
|
||||
func checkArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, issuer *uint64, err error) {
|
||||
body, err := readArmored(signature, SignatureType)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
return CheckDetachedSignature(keyring, signed, body)
|
||||
return checkDetachedSignature(keyring, signed, body)
|
||||
}
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
// Package s2k implements the various OpenPGP string-to-key transforms as
|
||||
// specified in RFC 4800 section 3.7.1.
|
||||
package s2k // import "golang.org/x/crypto/openpgp/s2k"
|
||||
package s2k // import "github.com/keybase/go-crypto/openpgp/s2k"
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
|
@ -12,7 +12,7 @@ import (
|
|||
"io"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
// Config collects configuration parameters for s2k key-stretching
|
||||
|
@ -151,6 +151,53 @@ func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
|
|||
}
|
||||
}
|
||||
|
||||
func parseGNUExtensions(r io.Reader) (f func(out, in []byte), err error) {
|
||||
var buf [9]byte
|
||||
|
||||
// A three-byte string identifier
|
||||
_, err = io.ReadFull(r, buf[:3])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
gnuExt := string(buf[:3])
|
||||
|
||||
if gnuExt != "GNU" {
|
||||
return nil, errors.UnsupportedError("Malformed GNU extension: " + gnuExt)
|
||||
}
|
||||
_, err = io.ReadFull(r, buf[:1])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
gnuExtType := int(buf[0])
|
||||
switch gnuExtType {
|
||||
case 1:
|
||||
return nil, nil
|
||||
case 2:
|
||||
// Read a serial number, which is prefixed by a 1-byte length.
|
||||
// The maximum length is 16.
|
||||
var lenBuf [1]byte
|
||||
_, err = io.ReadFull(r, lenBuf[:])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
maxLen := 16
|
||||
ivLen := int(lenBuf[0])
|
||||
if ivLen > maxLen {
|
||||
ivLen = maxLen
|
||||
}
|
||||
ivBuf := make([]byte, ivLen)
|
||||
// For now we simply discard the IV
|
||||
_, err = io.ReadFull(r, ivBuf)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
return nil, nil
|
||||
default:
|
||||
return nil, errors.UnsupportedError("unknown S2K GNU protection mode: " + strconv.Itoa(int(gnuExtType)))
|
||||
}
|
||||
}
|
||||
|
||||
// Parse reads a binary specification for a string-to-key transformation from r
|
||||
// and returns a function which performs that transform.
|
||||
func Parse(r io.Reader) (f func(out, in []byte), err error) {
|
||||
|
@ -161,6 +208,12 @@ func Parse(r io.Reader) (f func(out, in []byte), err error) {
|
|||
return
|
||||
}
|
||||
|
||||
// GNU Extensions; handle them before we try to look for a hash, which won't
|
||||
// be needed in most cases anyway.
|
||||
if buf[0] == 101 {
|
||||
return parseGNUExtensions(r)
|
||||
}
|
||||
|
||||
hash, ok := HashIdToHash(buf[1])
|
||||
if !ok {
|
||||
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
|
||||
|
@ -251,7 +304,7 @@ func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
|
|||
}
|
||||
|
||||
// HashIdToString returns the name of the hash function corresponding to the
|
||||
// given OpenPGP hash id.
|
||||
// given OpenPGP hash id, or panics if id is unknown.
|
||||
func HashIdToString(id byte) (name string, ok bool) {
|
||||
for _, m := range hashToHashIdMapping {
|
||||
if m.id == id {
|
135
vendor/github.com/keybase/go-crypto/openpgp/sig-v3.patch
generated
vendored
Normal file
135
vendor/github.com/keybase/go-crypto/openpgp/sig-v3.patch
generated
vendored
Normal file
|
@ -0,0 +1,135 @@
|
|||
diff --git a/openpgp/read.go b/openpgp/read.go
|
||||
index a6cecc5..0c9397b 100644
|
||||
--- a/openpgp/read.go
|
||||
+++ b/openpgp/read.go
|
||||
@@ -56,8 +56,9 @@ type MessageDetails struct {
|
||||
// been consumed. Once EOF has been seen, the following fields are
|
||||
// valid. (An authentication code failure is reported as a
|
||||
// SignatureError error when reading from UnverifiedBody.)
|
||||
- SignatureError error // nil if the signature is good.
|
||||
- Signature *packet.Signature // the signature packet itself.
|
||||
+ SignatureError error // nil if the signature is good.
|
||||
+ Signature *packet.Signature // the signature packet itself, if v4 (default)
|
||||
+ SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature
|
||||
|
||||
decrypted io.ReadCloser
|
||||
}
|
||||
@@ -334,13 +335,15 @@ func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
|
||||
}
|
||||
|
||||
var ok bool
|
||||
- if scr.md.Signature, ok = p.(*packet.Signature); !ok {
|
||||
+ if scr.md.Signature, ok = p.(*packet.Signature); ok {
|
||||
+ scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
|
||||
+ } else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok {
|
||||
+ scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3)
|
||||
+ } else {
|
||||
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature")
|
||||
return
|
||||
}
|
||||
|
||||
- scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
|
||||
-
|
||||
// The SymmetricallyEncrypted packet, if any, might have an
|
||||
// unsigned hash of its own. In order to check this we need to
|
||||
// close that Reader.
|
||||
diff --git a/openpgp/read_test.go b/openpgp/read_test.go
|
||||
index 52f942c..abe8d7b 100644
|
||||
--- a/openpgp/read_test.go
|
||||
+++ b/openpgp/read_test.go
|
||||
@@ -13,6 +13,7 @@ import (
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
+ "golang.org/x/crypto/openpgp/armor"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
)
|
||||
|
||||
@@ -411,6 +412,50 @@ func TestIssue11504(t *testing.T) {
|
||||
testReadMessageError(t, "9303000130303030303030303030983002303030303030030000000130")
|
||||
}
|
||||
|
||||
+// TestSignatureV3Message tests the verification of V3 signature, generated
|
||||
+// with a modern V4-style key. Some people have their clients set to generate
|
||||
+// V3 signatures, so it's useful to be able to verify them.
|
||||
+func TestSignatureV3Message(t *testing.T) {
|
||||
+ sig, err := armor.Decode(strings.NewReader(signedMessageV3))
|
||||
+ if err != nil {
|
||||
+ t.Error(err)
|
||||
+ return
|
||||
+ }
|
||||
+ key, err := ReadArmoredKeyRing(strings.NewReader(keyV4forVerifyingSignedMessageV3))
|
||||
+ if err != nil {
|
||||
+ t.Error(err)
|
||||
+ return
|
||||
+ }
|
||||
+ md, err := ReadMessage(sig.Body, key, nil, nil)
|
||||
+ if err != nil {
|
||||
+ t.Error(err)
|
||||
+ return
|
||||
+ }
|
||||
+
|
||||
+ _, err = ioutil.ReadAll(md.UnverifiedBody)
|
||||
+ if err != nil {
|
||||
+ t.Error(err)
|
||||
+ return
|
||||
+ }
|
||||
+
|
||||
+ // We'll see a sig error here after reading in the UnverifiedBody above,
|
||||
+ // if there was one to see.
|
||||
+ if err = md.SignatureError; err != nil {
|
||||
+ t.Error(err)
|
||||
+ return
|
||||
+ }
|
||||
+
|
||||
+ if md.SignatureV3 == nil {
|
||||
+ t.Errorf("No available signature after checking signature")
|
||||
+ return
|
||||
+ }
|
||||
+ if md.Signature != nil {
|
||||
+ t.Errorf("Did not expect a signature V4 back")
|
||||
+ return
|
||||
+ }
|
||||
+ return
|
||||
+}
|
||||
+
|
||||
const testKey1KeyId = 0xA34D7E18C20C31BB
|
||||
const testKey3KeyId = 0x338934250CCC0360
|
||||
|
||||
@@ -504,3 +549,36 @@ const unknownHashFunctionHex = `8a00000040040001990006050253863c24000a09103b4fe6
|
||||
const missingHashFunctionHex = `8a00000040040001030006050253863c24000a09103b4fe6acc0b21f32ffff0101010101010101010101010101010101010101010101010101010101010101010101010101`
|
||||
|
||||
const campbellQuine = `a0b001000300fcffa0b001000d00f2ff000300fcffa0b001000d00f2ff8270a01c00000500faff8270a01c00000500faff000500faff001400ebff8270a01c00000500faff000500faff001400ebff428821c400001400ebff428821c400001400ebff428821c400001400ebff428821c400001400ebff428821c400000000ffff000000ffff000b00f4ff428821c400000000ffff000000ffff000b00f4ff0233214c40000100feff000233214c40000100feff0000`
|
||||
+
|
||||
+const keyV4forVerifyingSignedMessageV3 = `-----BEGIN PGP PUBLIC KEY BLOCK-----
|
||||
+Comment: GPGTools - https://gpgtools.org
|
||||
+
|
||||
+mI0EVfxoFQEEAMBIqmbDfYygcvP6Phr1wr1XI41IF7Qixqybs/foBF8qqblD9gIY
|
||||
+BKpXjnBOtbkcVOJ0nljd3/sQIfH4E0vQwK5/4YRQSI59eKOqd6Fx+fWQOLG+uu6z
|
||||
+tewpeCj9LLHvibx/Sc7VWRnrznia6ftrXxJ/wHMezSab3tnGC0YPVdGNABEBAAG0
|
||||
+JEdvY3J5cHRvIFRlc3QgS2V5IDx0aGVtYXhAZ21haWwuY29tPoi5BBMBCgAjBQJV
|
||||
+/GgVAhsDBwsJCAcDAgEGFQgCCQoLBBYCAwECHgECF4AACgkQeXnQmhdGW9PFVAP+
|
||||
+K7TU0qX5ArvIONIxh/WAweyOk884c5cE8f+3NOPOOCRGyVy0FId5A7MmD5GOQh4H
|
||||
+JseOZVEVCqlmngEvtHZb3U1VYtVGE5WZ+6rQhGsMcWP5qaT4soYwMBlSYxgYwQcx
|
||||
+YhN9qOr292f9j2Y//TTIJmZT4Oa+lMxhWdqTfX+qMgG4jQRV/GgVAQQArhFSiij1
|
||||
+b+hT3dnapbEU+23Z1yTu1DfF6zsxQ4XQWEV3eR8v+8mEDDNcz8oyyF56k6UQ3rXi
|
||||
+UMTIwRDg4V6SbZmaFbZYCOwp/EmXJ3rfhm7z7yzXj2OFN22luuqbyVhuL7LRdB0M
|
||||
+pxgmjXb4tTvfgKd26x34S+QqUJ7W6uprY4sAEQEAAYifBBgBCgAJBQJV/GgVAhsM
|
||||
+AAoJEHl50JoXRlvT7y8D/02ckx4OMkKBZo7viyrBw0MLG92i+DC2bs35PooHR6zz
|
||||
+786mitjOp5z2QWNLBvxC70S0qVfCIz8jKupO1J6rq6Z8CcbLF3qjm6h1omUBf8Nd
|
||||
+EfXKD2/2HV6zMKVknnKzIEzauh+eCKS2CeJUSSSryap/QLVAjRnckaES/OsEWhNB
|
||||
+=RZia
|
||||
+-----END PGP PUBLIC KEY BLOCK-----
|
||||
+`
|
||||
+
|
||||
+const signedMessageV3 = `-----BEGIN PGP MESSAGE-----
|
||||
+Comment: GPGTools - https://gpgtools.org
|
||||
+
|
||||
+owGbwMvMwMVYWXlhlrhb9GXG03JJDKF/MtxDMjKLFYAoUaEktbhEITe1uDgxPVWP
|
||||
+q5NhKjMrWAVcC9evD8z/bF/uWNjqtk/X3y5/38XGRQHm/57rrDRYuGnTw597Xqka
|
||||
+uM3137/hH3Os+Jf2dc0fXOITKwJvXJvecPVs0ta+Vg7ZO1MLn8w58Xx+6L58mbka
|
||||
+DGHyU9yTueZE8D+QF/Tz28Y78dqtF56R1VPn9Xw4uJqrWYdd7b3vIZ1V6R4Nh05d
|
||||
+iT57d/OhWwA=
|
||||
+=hG7R
|
||||
+-----END PGP MESSAGE-----
|
||||
+`
|
|
@ -11,10 +11,10 @@ import (
|
|||
"strconv"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/armor"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/packet"
|
||||
"golang.org/x/crypto/openpgp/s2k"
|
||||
"github.com/keybase/go-crypto/openpgp/armor"
|
||||
"github.com/keybase/go-crypto/openpgp/errors"
|
||||
"github.com/keybase/go-crypto/openpgp/packet"
|
||||
"github.com/keybase/go-crypto/openpgp/s2k"
|
||||
)
|
||||
|
||||
// DetachSign signs message with the private key from signer (which must
|
||||
|
@ -59,20 +59,57 @@ func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType p
|
|||
return out.Close()
|
||||
}
|
||||
|
||||
// SignWithSigner signs the message of type sigType with s and writes the
|
||||
// signature to w.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func SignWithSigner(s packet.Signer, w io.Writer, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
|
||||
keyId := s.KeyId()
|
||||
sig := new(packet.Signature)
|
||||
sig.SigType = sigType
|
||||
sig.PubKeyAlgo = s.PublicKeyAlgo()
|
||||
sig.Hash = config.Hash()
|
||||
sig.CreationTime = config.Now()
|
||||
sig.IssuerKeyId = &keyId
|
||||
|
||||
s.Reset()
|
||||
|
||||
wrapped := s.(hash.Hash)
|
||||
|
||||
if sigType == packet.SigTypeText {
|
||||
wrapped = NewCanonicalTextHash(s)
|
||||
}
|
||||
|
||||
io.Copy(wrapped, message)
|
||||
|
||||
err = sig.Sign(s, nil, config)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
err = sig.Serialize(w)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
|
||||
if signer.PrivateKey == nil {
|
||||
signerSubkey, ok := signer.signingKey(config.Now())
|
||||
if !ok {
|
||||
err = errors.InvalidArgumentError("no valid signing keys")
|
||||
return
|
||||
}
|
||||
if signerSubkey.PrivateKey == nil {
|
||||
return errors.InvalidArgumentError("signing key doesn't have a private key")
|
||||
}
|
||||
if signer.PrivateKey.Encrypted {
|
||||
if signerSubkey.PrivateKey.Encrypted {
|
||||
return errors.InvalidArgumentError("signing key is encrypted")
|
||||
}
|
||||
|
||||
sig := new(packet.Signature)
|
||||
sig.SigType = sigType
|
||||
sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo
|
||||
sig.PubKeyAlgo = signerSubkey.PrivateKey.PubKeyAlgo
|
||||
sig.Hash = config.Hash()
|
||||
sig.CreationTime = config.Now()
|
||||
sig.IssuerKeyId = &signer.PrivateKey.KeyId
|
||||
sig.IssuerKeyId = &signerSubkey.PrivateKey.KeyId
|
||||
|
||||
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
|
||||
if err != nil {
|
||||
|
@ -80,7 +117,7 @@ func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.S
|
|||
}
|
||||
io.Copy(wrappedHash, message)
|
||||
|
||||
err = sig.Sign(h, signer.PrivateKey, config)
|
||||
err = sig.Sign(h, signerSubkey.PrivateKey, config)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
@ -198,11 +235,20 @@ func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHint
|
|||
hashToHashId(crypto.SHA1),
|
||||
hashToHashId(crypto.RIPEMD160),
|
||||
}
|
||||
// In the event that a recipient doesn't specify any supported ciphers
|
||||
// or hash functions, these are the ones that we assume that every
|
||||
// implementation supports.
|
||||
defaultCiphers := candidateCiphers[len(candidateCiphers)-1:]
|
||||
defaultHashes := candidateHashes[len(candidateHashes)-1:]
|
||||
|
||||
// If no preferences were specified, assume something safe and reasonable.
|
||||
defaultCiphers := []uint8{
|
||||
uint8(packet.CipherAES128),
|
||||
uint8(packet.CipherAES192),
|
||||
uint8(packet.CipherAES256),
|
||||
uint8(packet.CipherCAST5),
|
||||
}
|
||||
|
||||
defaultHashes := []uint8{
|
||||
hashToHashId(crypto.SHA256),
|
||||
hashToHashId(crypto.SHA512),
|
||||
hashToHashId(crypto.RIPEMD160),
|
||||
}
|
||||
|
||||
encryptKeys := make([]Key, len(to))
|
||||
for i := range to {
|
||||
|
@ -226,12 +272,15 @@ func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHint
|
|||
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
|
||||
}
|
||||
|
||||
if len(candidateCiphers) == 0 || len(candidateHashes) == 0 {
|
||||
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms")
|
||||
if len(candidateCiphers) == 0 {
|
||||
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common ciphers")
|
||||
}
|
||||
if len(candidateHashes) == 0 {
|
||||
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common hashes")
|
||||
}
|
||||
|
||||
cipher := packet.CipherFunction(candidateCiphers[0])
|
||||
// If the cipher specified by config is a candidate, we'll use that.
|
||||
// If the cipher specifed by config is a candidate, we'll use that.
|
||||
configuredCipher := config.Cipher()
|
||||
for _, c := range candidateCiphers {
|
||||
cipherFunc := packet.CipherFunction(c)
|
||||
|
@ -376,3 +425,71 @@ func (c noOpCloser) Write(data []byte) (n int, err error) {
|
|||
func (c noOpCloser) Close() error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// AttachedSign is like openpgp.Encrypt (as in p.crypto/openpgp/write.go), but
|
||||
// don't encrypt at all, just sign the literal unencrypted data.
|
||||
// Unfortunately we need to duplicate some code here that's already
|
||||
// in write.go
|
||||
func AttachedSign(out io.WriteCloser, signed Entity, hints *FileHints,
|
||||
config *packet.Config) (in io.WriteCloser, err error) {
|
||||
|
||||
if hints == nil {
|
||||
hints = &FileHints{}
|
||||
}
|
||||
|
||||
if config == nil {
|
||||
config = &packet.Config{}
|
||||
}
|
||||
|
||||
var signer *packet.PrivateKey
|
||||
|
||||
signKey, ok := signed.signingKey(config.Now())
|
||||
if !ok {
|
||||
err = errors.InvalidArgumentError("no valid signing keys")
|
||||
return
|
||||
}
|
||||
signer = signKey.PrivateKey
|
||||
if signer == nil {
|
||||
err = errors.InvalidArgumentError("no valid signing keys")
|
||||
return
|
||||
}
|
||||
if signer.Encrypted {
|
||||
err = errors.InvalidArgumentError("signing key must be decrypted")
|
||||
return
|
||||
}
|
||||
|
||||
hasher := crypto.SHA512
|
||||
|
||||
ops := &packet.OnePassSignature{
|
||||
SigType: packet.SigTypeBinary,
|
||||
Hash: hasher,
|
||||
PubKeyAlgo: signer.PubKeyAlgo,
|
||||
KeyId: signer.KeyId,
|
||||
IsLast: true,
|
||||
}
|
||||
|
||||
if err = ops.Serialize(out); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
var epochSeconds uint32
|
||||
if !hints.ModTime.IsZero() {
|
||||
epochSeconds = uint32(hints.ModTime.Unix())
|
||||
}
|
||||
|
||||
// We don't want the literal serializer to closer the output stream
|
||||
// since we're going to need to write to it when we finish up the
|
||||
// signature stuff.
|
||||
in, err = packet.SerializeLiteral(noOpCloser{out}, hints.IsBinary, hints.FileName, epochSeconds)
|
||||
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
// If we need to write a signature packet after the literal
|
||||
// data then we need to stop literalData from closing
|
||||
// encryptedData.
|
||||
in = signatureWriter{out, in, hasher, hasher.New(), signer, config}
|
||||
|
||||
return
|
||||
}
|
325
vendor/github.com/keybase/go-crypto/rsa/pkcs1v15.go
generated
vendored
Normal file
325
vendor/github.com/keybase/go-crypto/rsa/pkcs1v15.go
generated
vendored
Normal file
|
@ -0,0 +1,325 @@
|
|||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package rsa
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// This file implements encryption and decryption using PKCS#1 v1.5 padding.
|
||||
|
||||
// PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using
|
||||
// the crypto.Decrypter interface.
|
||||
type PKCS1v15DecryptOptions struct {
|
||||
// SessionKeyLen is the length of the session key that is being
|
||||
// decrypted. If not zero, then a padding error during decryption will
|
||||
// cause a random plaintext of this length to be returned rather than
|
||||
// an error. These alternatives happen in constant time.
|
||||
SessionKeyLen int
|
||||
}
|
||||
|
||||
// EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5.
|
||||
// The message must be no longer than the length of the public modulus minus 11 bytes.
|
||||
//
|
||||
// The rand parameter is used as a source of entropy to ensure that encrypting
|
||||
// the same message twice doesn't result in the same ciphertext.
|
||||
//
|
||||
// WARNING: use of this function to encrypt plaintexts other than session keys
|
||||
// is dangerous. Use RSA OAEP in new protocols.
|
||||
func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) {
|
||||
if err := checkPub(pub); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
k := (pub.N.BitLen() + 7) / 8
|
||||
if len(msg) > k-11 {
|
||||
err = ErrMessageTooLong
|
||||
return
|
||||
}
|
||||
|
||||
// EM = 0x00 || 0x02 || PS || 0x00 || M
|
||||
em := make([]byte, k)
|
||||
em[1] = 2
|
||||
ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
|
||||
err = nonZeroRandomBytes(ps, rand)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
em[len(em)-len(msg)-1] = 0
|
||||
copy(mm, msg)
|
||||
|
||||
m := new(big.Int).SetBytes(em)
|
||||
c := encrypt(new(big.Int), pub, m)
|
||||
|
||||
copyWithLeftPad(em, c.Bytes())
|
||||
out = em
|
||||
return
|
||||
}
|
||||
|
||||
// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
|
||||
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
|
||||
//
|
||||
// Note that whether this function returns an error or not discloses secret
|
||||
// information. If an attacker can cause this function to run repeatedly and
|
||||
// learn whether each instance returned an error then they can decrypt and
|
||||
// forge signatures as if they had the private key. See
|
||||
// DecryptPKCS1v15SessionKey for a way of solving this problem.
|
||||
func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) {
|
||||
if err := checkPub(&priv.PublicKey); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
if valid == 0 {
|
||||
return nil, ErrDecryption
|
||||
}
|
||||
out = out[index:]
|
||||
return
|
||||
}
|
||||
|
||||
// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
|
||||
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
|
||||
// It returns an error if the ciphertext is the wrong length or if the
|
||||
// ciphertext is greater than the public modulus. Otherwise, no error is
|
||||
// returned. If the padding is valid, the resulting plaintext message is copied
|
||||
// into key. Otherwise, key is unchanged. These alternatives occur in constant
|
||||
// time. It is intended that the user of this function generate a random
|
||||
// session key beforehand and continue the protocol with the resulting value.
|
||||
// This will remove any possibility that an attacker can learn any information
|
||||
// about the plaintext.
|
||||
// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
|
||||
// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
|
||||
// (Crypto '98).
|
||||
//
|
||||
// Note that if the session key is too small then it may be possible for an
|
||||
// attacker to brute-force it. If they can do that then they can learn whether
|
||||
// a random value was used (because it'll be different for the same ciphertext)
|
||||
// and thus whether the padding was correct. This defeats the point of this
|
||||
// function. Using at least a 16-byte key will protect against this attack.
|
||||
func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) {
|
||||
if err := checkPub(&priv.PublicKey); err != nil {
|
||||
return err
|
||||
}
|
||||
k := (priv.N.BitLen() + 7) / 8
|
||||
if k-(len(key)+3+8) < 0 {
|
||||
return ErrDecryption
|
||||
}
|
||||
|
||||
valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
if len(em) != k {
|
||||
// This should be impossible because decryptPKCS1v15 always
|
||||
// returns the full slice.
|
||||
return ErrDecryption
|
||||
}
|
||||
|
||||
valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
|
||||
subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
|
||||
return
|
||||
}
|
||||
|
||||
// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
|
||||
// rand is not nil. It returns one or zero in valid that indicates whether the
|
||||
// plaintext was correctly structured. In either case, the plaintext is
|
||||
// returned in em so that it may be read independently of whether it was valid
|
||||
// in order to maintain constant memory access patterns. If the plaintext was
|
||||
// valid then index contains the index of the original message in em.
|
||||
func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
|
||||
k := (priv.N.BitLen() + 7) / 8
|
||||
if k < 11 {
|
||||
err = ErrDecryption
|
||||
return
|
||||
}
|
||||
|
||||
c := new(big.Int).SetBytes(ciphertext)
|
||||
m, err := decrypt(rand, priv, c)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
em = leftPad(m.Bytes(), k)
|
||||
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
|
||||
secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
|
||||
|
||||
// The remainder of the plaintext must be a string of non-zero random
|
||||
// octets, followed by a 0, followed by the message.
|
||||
// lookingForIndex: 1 iff we are still looking for the zero.
|
||||
// index: the offset of the first zero byte.
|
||||
lookingForIndex := 1
|
||||
|
||||
for i := 2; i < len(em); i++ {
|
||||
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
|
||||
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
|
||||
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
|
||||
}
|
||||
|
||||
// The PS padding must be at least 8 bytes long, and it starts two
|
||||
// bytes into em.
|
||||
validPS := subtle.ConstantTimeLessOrEq(2+8, index)
|
||||
|
||||
valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
|
||||
index = subtle.ConstantTimeSelect(valid, index+1, 0)
|
||||
return valid, em, index, nil
|
||||
}
|
||||
|
||||
// nonZeroRandomBytes fills the given slice with non-zero random octets.
|
||||
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
|
||||
_, err = io.ReadFull(rand, s)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
for i := 0; i < len(s); i++ {
|
||||
for s[i] == 0 {
|
||||
_, err = io.ReadFull(rand, s[i:i+1])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
// In tests, the PRNG may return all zeros so we do
|
||||
// this to break the loop.
|
||||
s[i] ^= 0x42
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// These are ASN1 DER structures:
|
||||
// DigestInfo ::= SEQUENCE {
|
||||
// digestAlgorithm AlgorithmIdentifier,
|
||||
// digest OCTET STRING
|
||||
// }
|
||||
// For performance, we don't use the generic ASN1 encoder. Rather, we
|
||||
// precompute a prefix of the digest value that makes a valid ASN1 DER string
|
||||
// with the correct contents.
|
||||
var hashPrefixes = map[crypto.Hash][]byte{
|
||||
crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
|
||||
crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
|
||||
crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
|
||||
crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
|
||||
crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
|
||||
crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
|
||||
crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
|
||||
crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
|
||||
}
|
||||
|
||||
// SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.
|
||||
// Note that hashed must be the result of hashing the input message using the
|
||||
// given hash function. If hash is zero, hashed is signed directly. This isn't
|
||||
// advisable except for interoperability.
|
||||
//
|
||||
// If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks.
|
||||
//
|
||||
// This function is deterministic. Thus, if the set of possible messages is
|
||||
// small, an attacker may be able to build a map from messages to signatures
|
||||
// and identify the signed messages. As ever, signatures provide authenticity,
|
||||
// not confidentiality.
|
||||
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) {
|
||||
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
tLen := len(prefix) + hashLen
|
||||
k := (priv.N.BitLen() + 7) / 8
|
||||
if k < tLen+11 {
|
||||
return nil, ErrMessageTooLong
|
||||
}
|
||||
|
||||
// EM = 0x00 || 0x01 || PS || 0x00 || T
|
||||
em := make([]byte, k)
|
||||
em[1] = 1
|
||||
for i := 2; i < k-tLen-1; i++ {
|
||||
em[i] = 0xff
|
||||
}
|
||||
copy(em[k-tLen:k-hashLen], prefix)
|
||||
copy(em[k-hashLen:k], hashed)
|
||||
|
||||
m := new(big.Int).SetBytes(em)
|
||||
c, err := decryptAndCheck(rand, priv, m)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
copyWithLeftPad(em, c.Bytes())
|
||||
s = em
|
||||
return
|
||||
}
|
||||
|
||||
// VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
|
||||
// hashed is the result of hashing the input message using the given hash
|
||||
// function and sig is the signature. A valid signature is indicated by
|
||||
// returning a nil error. If hash is zero then hashed is used directly. This
|
||||
// isn't advisable except for interoperability.
|
||||
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) {
|
||||
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
tLen := len(prefix) + hashLen
|
||||
k := (pub.N.BitLen() + 7) / 8
|
||||
if k < tLen+11 {
|
||||
err = ErrVerification
|
||||
return
|
||||
}
|
||||
|
||||
c := new(big.Int).SetBytes(sig)
|
||||
m := encrypt(new(big.Int), pub, c)
|
||||
em := leftPad(m.Bytes(), k)
|
||||
// EM = 0x00 || 0x01 || PS || 0x00 || T
|
||||
|
||||
ok := subtle.ConstantTimeByteEq(em[0], 0)
|
||||
ok &= subtle.ConstantTimeByteEq(em[1], 1)
|
||||
ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
|
||||
ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
|
||||
ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
|
||||
|
||||
for i := 2; i < k-tLen-1; i++ {
|
||||
ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
|
||||
}
|
||||
|
||||
if ok != 1 {
|
||||
return ErrVerification
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
|
||||
// Special case: crypto.Hash(0) is used to indicate that the data is
|
||||
// signed directly.
|
||||
if hash == 0 {
|
||||
return inLen, nil, nil
|
||||
}
|
||||
|
||||
hashLen = hash.Size()
|
||||
if inLen != hashLen {
|
||||
return 0, nil, errors.New("crypto/rsa: input must be hashed message")
|
||||
}
|
||||
prefix, ok := hashPrefixes[hash]
|
||||
if !ok {
|
||||
return 0, nil, errors.New("crypto/rsa: unsupported hash function")
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// copyWithLeftPad copies src to the end of dest, padding with zero bytes as
|
||||
// needed.
|
||||
func copyWithLeftPad(dest, src []byte) {
|
||||
numPaddingBytes := len(dest) - len(src)
|
||||
for i := 0; i < numPaddingBytes; i++ {
|
||||
dest[i] = 0
|
||||
}
|
||||
copy(dest[numPaddingBytes:], src)
|
||||
}
|
297
vendor/github.com/keybase/go-crypto/rsa/pss.go
generated
vendored
Normal file
297
vendor/github.com/keybase/go-crypto/rsa/pss.go
generated
vendored
Normal file
|
@ -0,0 +1,297 @@
|
|||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package rsa
|
||||
|
||||
// This file implements the PSS signature scheme [1].
|
||||
//
|
||||
// [1] http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"errors"
|
||||
"hash"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
|
||||
// See [1], section 9.1.1
|
||||
hLen := hash.Size()
|
||||
sLen := len(salt)
|
||||
emLen := (emBits + 7) / 8
|
||||
|
||||
// 1. If the length of M is greater than the input limitation for the
|
||||
// hash function (2^61 - 1 octets for SHA-1), output "message too
|
||||
// long" and stop.
|
||||
//
|
||||
// 2. Let mHash = Hash(M), an octet string of length hLen.
|
||||
|
||||
if len(mHash) != hLen {
|
||||
return nil, errors.New("crypto/rsa: input must be hashed message")
|
||||
}
|
||||
|
||||
// 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
|
||||
|
||||
if emLen < hLen+sLen+2 {
|
||||
return nil, errors.New("crypto/rsa: encoding error")
|
||||
}
|
||||
|
||||
em := make([]byte, emLen)
|
||||
db := em[:emLen-sLen-hLen-2+1+sLen]
|
||||
h := em[emLen-sLen-hLen-2+1+sLen : emLen-1]
|
||||
|
||||
// 4. Generate a random octet string salt of length sLen; if sLen = 0,
|
||||
// then salt is the empty string.
|
||||
//
|
||||
// 5. Let
|
||||
// M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
|
||||
//
|
||||
// M' is an octet string of length 8 + hLen + sLen with eight
|
||||
// initial zero octets.
|
||||
//
|
||||
// 6. Let H = Hash(M'), an octet string of length hLen.
|
||||
|
||||
var prefix [8]byte
|
||||
|
||||
hash.Write(prefix[:])
|
||||
hash.Write(mHash)
|
||||
hash.Write(salt)
|
||||
|
||||
h = hash.Sum(h[:0])
|
||||
hash.Reset()
|
||||
|
||||
// 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
|
||||
// zero octets. The length of PS may be 0.
|
||||
//
|
||||
// 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
|
||||
// emLen - hLen - 1.
|
||||
|
||||
db[emLen-sLen-hLen-2] = 0x01
|
||||
copy(db[emLen-sLen-hLen-1:], salt)
|
||||
|
||||
// 9. Let dbMask = MGF(H, emLen - hLen - 1).
|
||||
//
|
||||
// 10. Let maskedDB = DB \xor dbMask.
|
||||
|
||||
mgf1XOR(db, hash, h)
|
||||
|
||||
// 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
|
||||
// maskedDB to zero.
|
||||
|
||||
db[0] &= (0xFF >> uint(8*emLen-emBits))
|
||||
|
||||
// 12. Let EM = maskedDB || H || 0xbc.
|
||||
em[emLen-1] = 0xBC
|
||||
|
||||
// 13. Output EM.
|
||||
return em, nil
|
||||
}
|
||||
|
||||
func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
|
||||
// 1. If the length of M is greater than the input limitation for the
|
||||
// hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
|
||||
// and stop.
|
||||
//
|
||||
// 2. Let mHash = Hash(M), an octet string of length hLen.
|
||||
hLen := hash.Size()
|
||||
if hLen != len(mHash) {
|
||||
return ErrVerification
|
||||
}
|
||||
|
||||
// 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
|
||||
emLen := (emBits + 7) / 8
|
||||
if emLen < hLen+sLen+2 {
|
||||
return ErrVerification
|
||||
}
|
||||
|
||||
// 4. If the rightmost octet of EM does not have hexadecimal value
|
||||
// 0xbc, output "inconsistent" and stop.
|
||||
if em[len(em)-1] != 0xBC {
|
||||
return ErrVerification
|
||||
}
|
||||
|
||||
// 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
|
||||
// let H be the next hLen octets.
|
||||
db := em[:emLen-hLen-1]
|
||||
h := em[emLen-hLen-1 : len(em)-1]
|
||||
|
||||
// 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
|
||||
// maskedDB are not all equal to zero, output "inconsistent" and
|
||||
// stop.
|
||||
if em[0]&(0xFF<<uint(8-(8*emLen-emBits))) != 0 {
|
||||
return ErrVerification
|
||||
}
|
||||
|
||||
// 7. Let dbMask = MGF(H, emLen - hLen - 1).
|
||||
//
|
||||
// 8. Let DB = maskedDB \xor dbMask.
|
||||
mgf1XOR(db, hash, h)
|
||||
|
||||
// 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
|
||||
// to zero.
|
||||
db[0] &= (0xFF >> uint(8*emLen-emBits))
|
||||
|
||||
if sLen == PSSSaltLengthAuto {
|
||||
FindSaltLength:
|
||||
for sLen = emLen - (hLen + 2); sLen >= 0; sLen-- {
|
||||
switch db[emLen-hLen-sLen-2] {
|
||||
case 1:
|
||||
break FindSaltLength
|
||||
case 0:
|
||||
continue
|
||||
default:
|
||||
return ErrVerification
|
||||
}
|
||||
}
|
||||
if sLen < 0 {
|
||||
return ErrVerification
|
||||
}
|
||||
} else {
|
||||
// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
|
||||
// or if the octet at position emLen - hLen - sLen - 1 (the leftmost
|
||||
// position is "position 1") does not have hexadecimal value 0x01,
|
||||
// output "inconsistent" and stop.
|
||||
for _, e := range db[:emLen-hLen-sLen-2] {
|
||||
if e != 0x00 {
|
||||
return ErrVerification
|
||||
}
|
||||
}
|
||||
if db[emLen-hLen-sLen-2] != 0x01 {
|
||||
return ErrVerification
|
||||
}
|
||||
}
|
||||
|
||||
// 11. Let salt be the last sLen octets of DB.
|
||||
salt := db[len(db)-sLen:]
|
||||
|
||||
// 12. Let
|
||||
// M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
|
||||
// M' is an octet string of length 8 + hLen + sLen with eight
|
||||
// initial zero octets.
|
||||
//
|
||||
// 13. Let H' = Hash(M'), an octet string of length hLen.
|
||||
var prefix [8]byte
|
||||
hash.Write(prefix[:])
|
||||
hash.Write(mHash)
|
||||
hash.Write(salt)
|
||||
|
||||
h0 := hash.Sum(nil)
|
||||
|
||||
// 14. If H = H', output "consistent." Otherwise, output "inconsistent."
|
||||
if !bytes.Equal(h0, h) {
|
||||
return ErrVerification
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt.
|
||||
// Note that hashed must be the result of hashing the input message using the
|
||||
// given hash function. salt is a random sequence of bytes whose length will be
|
||||
// later used to verify the signature.
|
||||
func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) (s []byte, err error) {
|
||||
nBits := priv.N.BitLen()
|
||||
em, err := emsaPSSEncode(hashed, nBits-1, salt, hash.New())
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
m := new(big.Int).SetBytes(em)
|
||||
c, err := decryptAndCheck(rand, priv, m)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
s = make([]byte, (nBits+7)/8)
|
||||
copyWithLeftPad(s, c.Bytes())
|
||||
return
|
||||
}
|
||||
|
||||
const (
|
||||
// PSSSaltLengthAuto causes the salt in a PSS signature to be as large
|
||||
// as possible when signing, and to be auto-detected when verifying.
|
||||
PSSSaltLengthAuto = 0
|
||||
// PSSSaltLengthEqualsHash causes the salt length to equal the length
|
||||
// of the hash used in the signature.
|
||||
PSSSaltLengthEqualsHash = -1
|
||||
)
|
||||
|
||||
// PSSOptions contains options for creating and verifying PSS signatures.
|
||||
type PSSOptions struct {
|
||||
// SaltLength controls the length of the salt used in the PSS
|
||||
// signature. It can either be a number of bytes, or one of the special
|
||||
// PSSSaltLength constants.
|
||||
SaltLength int
|
||||
|
||||
// Hash, if not zero, overrides the hash function passed to SignPSS.
|
||||
// This is the only way to specify the hash function when using the
|
||||
// crypto.Signer interface.
|
||||
Hash crypto.Hash
|
||||
}
|
||||
|
||||
// HashFunc returns pssOpts.Hash so that PSSOptions implements
|
||||
// crypto.SignerOpts.
|
||||
func (pssOpts *PSSOptions) HashFunc() crypto.Hash {
|
||||
return pssOpts.Hash
|
||||
}
|
||||
|
||||
func (opts *PSSOptions) saltLength() int {
|
||||
if opts == nil {
|
||||
return PSSSaltLengthAuto
|
||||
}
|
||||
return opts.SaltLength
|
||||
}
|
||||
|
||||
// SignPSS calculates the signature of hashed using RSASSA-PSS [1].
|
||||
// Note that hashed must be the result of hashing the input message using the
|
||||
// given hash function. The opts argument may be nil, in which case sensible
|
||||
// defaults are used.
|
||||
func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error) {
|
||||
saltLength := opts.saltLength()
|
||||
switch saltLength {
|
||||
case PSSSaltLengthAuto:
|
||||
saltLength = (priv.N.BitLen()+7)/8 - 2 - hash.Size()
|
||||
case PSSSaltLengthEqualsHash:
|
||||
saltLength = hash.Size()
|
||||
}
|
||||
|
||||
if opts != nil && opts.Hash != 0 {
|
||||
hash = opts.Hash
|
||||
}
|
||||
|
||||
salt := make([]byte, saltLength)
|
||||
if _, err = io.ReadFull(rand, salt); err != nil {
|
||||
return
|
||||
}
|
||||
return signPSSWithSalt(rand, priv, hash, hashed, salt)
|
||||
}
|
||||
|
||||
// VerifyPSS verifies a PSS signature.
|
||||
// hashed is the result of hashing the input message using the given hash
|
||||
// function and sig is the signature. A valid signature is indicated by
|
||||
// returning a nil error. The opts argument may be nil, in which case sensible
|
||||
// defaults are used.
|
||||
func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error {
|
||||
return verifyPSS(pub, hash, hashed, sig, opts.saltLength())
|
||||
}
|
||||
|
||||
// verifyPSS verifies a PSS signature with the given salt length.
|
||||
func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error {
|
||||
nBits := pub.N.BitLen()
|
||||
if len(sig) != (nBits+7)/8 {
|
||||
return ErrVerification
|
||||
}
|
||||
s := new(big.Int).SetBytes(sig)
|
||||
m := encrypt(new(big.Int), pub, s)
|
||||
emBits := nBits - 1
|
||||
emLen := (emBits + 7) / 8
|
||||
if emLen < len(m.Bytes()) {
|
||||
return ErrVerification
|
||||
}
|
||||
em := make([]byte, emLen)
|
||||
copyWithLeftPad(em, m.Bytes())
|
||||
if saltLen == PSSSaltLengthEqualsHash {
|
||||
saltLen = hash.Size()
|
||||
}
|
||||
return emsaPSSVerify(hashed, em, emBits, saltLen, hash.New())
|
||||
}
|
646
vendor/github.com/keybase/go-crypto/rsa/rsa.go
generated
vendored
Normal file
646
vendor/github.com/keybase/go-crypto/rsa/rsa.go
generated
vendored
Normal file
|
@ -0,0 +1,646 @@
|
|||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package rsa implements RSA encryption as specified in PKCS#1.
|
||||
//
|
||||
// RSA is a single, fundamental operation that is used in this package to
|
||||
// implement either public-key encryption or public-key signatures.
|
||||
//
|
||||
// The original specification for encryption and signatures with RSA is PKCS#1
|
||||
// and the terms "RSA encryption" and "RSA signatures" by default refer to
|
||||
// PKCS#1 version 1.5. However, that specification has flaws and new designs
|
||||
// should use version two, usually called by just OAEP and PSS, where
|
||||
// possible.
|
||||
//
|
||||
// Two sets of interfaces are included in this package. When a more abstract
|
||||
// interface isn't neccessary, there are functions for encrypting/decrypting
|
||||
// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
|
||||
// over the public-key primitive, the PrivateKey struct implements the
|
||||
// Decrypter and Signer interfaces from the crypto package.
|
||||
package rsa
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/rand"
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"hash"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
var bigZero = big.NewInt(0)
|
||||
var bigOne = big.NewInt(1)
|
||||
|
||||
// A PublicKey represents the public part of an RSA key.
|
||||
type PublicKey struct {
|
||||
N *big.Int // modulus
|
||||
E int64 // public exponent
|
||||
}
|
||||
|
||||
// OAEPOptions is an interface for passing options to OAEP decryption using the
|
||||
// crypto.Decrypter interface.
|
||||
type OAEPOptions struct {
|
||||
// Hash is the hash function that will be used when generating the mask.
|
||||
Hash crypto.Hash
|
||||
// Label is an arbitrary byte string that must be equal to the value
|
||||
// used when encrypting.
|
||||
Label []byte
|
||||
}
|
||||
|
||||
var (
|
||||
errPublicModulus = errors.New("crypto/rsa: missing public modulus")
|
||||
errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
|
||||
errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
|
||||
)
|
||||
|
||||
// checkPub sanity checks the public key before we use it.
|
||||
// We require pub.E to fit into a 32-bit integer so that we
|
||||
// do not have different behavior depending on whether
|
||||
// int is 32 or 64 bits. See also
|
||||
// http://www.imperialviolet.org/2012/03/16/rsae.html.
|
||||
func checkPub(pub *PublicKey) error {
|
||||
if pub.N == nil {
|
||||
return errPublicModulus
|
||||
}
|
||||
if pub.E < 2 {
|
||||
return errPublicExponentSmall
|
||||
}
|
||||
if pub.E > 1<<63-1 {
|
||||
return errPublicExponentLarge
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// A PrivateKey represents an RSA key
|
||||
type PrivateKey struct {
|
||||
PublicKey // public part.
|
||||
D *big.Int // private exponent
|
||||
Primes []*big.Int // prime factors of N, has >= 2 elements.
|
||||
|
||||
// Precomputed contains precomputed values that speed up private
|
||||
// operations, if available.
|
||||
Precomputed PrecomputedValues
|
||||
}
|
||||
|
||||
// Public returns the public key corresponding to priv.
|
||||
func (priv *PrivateKey) Public() crypto.PublicKey {
|
||||
return &priv.PublicKey
|
||||
}
|
||||
|
||||
// Sign signs msg with priv, reading randomness from rand. If opts is a
|
||||
// *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
|
||||
// be used. This method is intended to support keys where the private part is
|
||||
// kept in, for example, a hardware module. Common uses should use the Sign*
|
||||
// functions in this package.
|
||||
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
|
||||
if pssOpts, ok := opts.(*PSSOptions); ok {
|
||||
return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
|
||||
}
|
||||
|
||||
return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
|
||||
}
|
||||
|
||||
// Decrypt decrypts ciphertext with priv. If opts is nil or of type
|
||||
// *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
|
||||
// opts must have type *OAEPOptions and OAEP decryption is done.
|
||||
func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
|
||||
if opts == nil {
|
||||
return DecryptPKCS1v15(rand, priv, ciphertext)
|
||||
}
|
||||
|
||||
switch opts := opts.(type) {
|
||||
case *OAEPOptions:
|
||||
return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
|
||||
|
||||
case *PKCS1v15DecryptOptions:
|
||||
if l := opts.SessionKeyLen; l > 0 {
|
||||
plaintext = make([]byte, l)
|
||||
if _, err := io.ReadFull(rand, plaintext); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return plaintext, nil
|
||||
} else {
|
||||
return DecryptPKCS1v15(rand, priv, ciphertext)
|
||||
}
|
||||
|
||||
default:
|
||||
return nil, errors.New("crypto/rsa: invalid options for Decrypt")
|
||||
}
|
||||
}
|
||||
|
||||
type PrecomputedValues struct {
|
||||
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
|
||||
Qinv *big.Int // Q^-1 mod P
|
||||
|
||||
// CRTValues is used for the 3rd and subsequent primes. Due to a
|
||||
// historical accident, the CRT for the first two primes is handled
|
||||
// differently in PKCS#1 and interoperability is sufficiently
|
||||
// important that we mirror this.
|
||||
CRTValues []CRTValue
|
||||
}
|
||||
|
||||
// CRTValue contains the precomputed Chinese remainder theorem values.
|
||||
type CRTValue struct {
|
||||
Exp *big.Int // D mod (prime-1).
|
||||
Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
|
||||
R *big.Int // product of primes prior to this (inc p and q).
|
||||
}
|
||||
|
||||
// Validate performs basic sanity checks on the key.
|
||||
// It returns nil if the key is valid, or else an error describing a problem.
|
||||
func (priv *PrivateKey) Validate() error {
|
||||
if err := checkPub(&priv.PublicKey); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Check that Πprimes == n.
|
||||
modulus := new(big.Int).Set(bigOne)
|
||||
for _, prime := range priv.Primes {
|
||||
// Any primes ≤ 1 will cause divide-by-zero panics later.
|
||||
if prime.Cmp(bigOne) <= 0 {
|
||||
return errors.New("crypto/rsa: invalid prime value")
|
||||
}
|
||||
modulus.Mul(modulus, prime)
|
||||
}
|
||||
if modulus.Cmp(priv.N) != 0 {
|
||||
return errors.New("crypto/rsa: invalid modulus")
|
||||
}
|
||||
|
||||
// Check that de ≡ 1 mod p-1, for each prime.
|
||||
// This implies that e is coprime to each p-1 as e has a multiplicative
|
||||
// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
|
||||
// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
|
||||
// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
|
||||
congruence := new(big.Int)
|
||||
de := new(big.Int).SetInt64(int64(priv.E))
|
||||
de.Mul(de, priv.D)
|
||||
for _, prime := range priv.Primes {
|
||||
pminus1 := new(big.Int).Sub(prime, bigOne)
|
||||
congruence.Mod(de, pminus1)
|
||||
if congruence.Cmp(bigOne) != 0 {
|
||||
return errors.New("crypto/rsa: invalid exponents")
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// GenerateKey generates an RSA keypair of the given bit size using the
|
||||
// random source random (for example, crypto/rand.Reader).
|
||||
func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
|
||||
return GenerateMultiPrimeKey(random, 2, bits)
|
||||
}
|
||||
|
||||
// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
|
||||
// size and the given random source, as suggested in [1]. Although the public
|
||||
// keys are compatible (actually, indistinguishable) from the 2-prime case,
|
||||
// the private keys are not. Thus it may not be possible to export multi-prime
|
||||
// private keys in certain formats or to subsequently import them into other
|
||||
// code.
|
||||
//
|
||||
// Table 1 in [2] suggests maximum numbers of primes for a given size.
|
||||
//
|
||||
// [1] US patent 4405829 (1972, expired)
|
||||
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
||||
func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
|
||||
priv = new(PrivateKey)
|
||||
priv.E = 65537
|
||||
|
||||
if nprimes < 2 {
|
||||
return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
|
||||
}
|
||||
|
||||
primes := make([]*big.Int, nprimes)
|
||||
|
||||
NextSetOfPrimes:
|
||||
for {
|
||||
todo := bits
|
||||
// crypto/rand should set the top two bits in each prime.
|
||||
// Thus each prime has the form
|
||||
// p_i = 2^bitlen(p_i) × 0.11... (in base 2).
|
||||
// And the product is:
|
||||
// P = 2^todo × α
|
||||
// where α is the product of nprimes numbers of the form 0.11...
|
||||
//
|
||||
// If α < 1/2 (which can happen for nprimes > 2), we need to
|
||||
// shift todo to compensate for lost bits: the mean value of 0.11...
|
||||
// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
|
||||
// will give good results.
|
||||
if nprimes >= 7 {
|
||||
todo += (nprimes - 2) / 5
|
||||
}
|
||||
for i := 0; i < nprimes; i++ {
|
||||
primes[i], err = rand.Prime(random, todo/(nprimes-i))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
todo -= primes[i].BitLen()
|
||||
}
|
||||
|
||||
// Make sure that primes is pairwise unequal.
|
||||
for i, prime := range primes {
|
||||
for j := 0; j < i; j++ {
|
||||
if prime.Cmp(primes[j]) == 0 {
|
||||
continue NextSetOfPrimes
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
n := new(big.Int).Set(bigOne)
|
||||
totient := new(big.Int).Set(bigOne)
|
||||
pminus1 := new(big.Int)
|
||||
for _, prime := range primes {
|
||||
n.Mul(n, prime)
|
||||
pminus1.Sub(prime, bigOne)
|
||||
totient.Mul(totient, pminus1)
|
||||
}
|
||||
if n.BitLen() != bits {
|
||||
// This should never happen for nprimes == 2 because
|
||||
// crypto/rand should set the top two bits in each prime.
|
||||
// For nprimes > 2 we hope it does not happen often.
|
||||
continue NextSetOfPrimes
|
||||
}
|
||||
|
||||
g := new(big.Int)
|
||||
priv.D = new(big.Int)
|
||||
y := new(big.Int)
|
||||
e := big.NewInt(int64(priv.E))
|
||||
g.GCD(priv.D, y, e, totient)
|
||||
|
||||
if g.Cmp(bigOne) == 0 {
|
||||
if priv.D.Sign() < 0 {
|
||||
priv.D.Add(priv.D, totient)
|
||||
}
|
||||
priv.Primes = primes
|
||||
priv.N = n
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
priv.Precompute()
|
||||
return
|
||||
}
|
||||
|
||||
// incCounter increments a four byte, big-endian counter.
|
||||
func incCounter(c *[4]byte) {
|
||||
if c[3]++; c[3] != 0 {
|
||||
return
|
||||
}
|
||||
if c[2]++; c[2] != 0 {
|
||||
return
|
||||
}
|
||||
if c[1]++; c[1] != 0 {
|
||||
return
|
||||
}
|
||||
c[0]++
|
||||
}
|
||||
|
||||
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
|
||||
// specified in PKCS#1 v2.1.
|
||||
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
|
||||
var counter [4]byte
|
||||
var digest []byte
|
||||
|
||||
done := 0
|
||||
for done < len(out) {
|
||||
hash.Write(seed)
|
||||
hash.Write(counter[0:4])
|
||||
digest = hash.Sum(digest[:0])
|
||||
hash.Reset()
|
||||
|
||||
for i := 0; i < len(digest) && done < len(out); i++ {
|
||||
out[done] ^= digest[i]
|
||||
done++
|
||||
}
|
||||
incCounter(&counter)
|
||||
}
|
||||
}
|
||||
|
||||
// ErrMessageTooLong is returned when attempting to encrypt a message which is
|
||||
// too large for the size of the public key.
|
||||
var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
|
||||
|
||||
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
|
||||
e := big.NewInt(int64(pub.E))
|
||||
c.Exp(m, e, pub.N)
|
||||
return c
|
||||
}
|
||||
|
||||
// EncryptOAEP encrypts the given message with RSA-OAEP.
|
||||
//
|
||||
// OAEP is parameterised by a hash function that is used as a random oracle.
|
||||
// Encryption and decryption of a given message must use the same hash function
|
||||
// and sha256.New() is a reasonable choice.
|
||||
//
|
||||
// The random parameter is used as a source of entropy to ensure that
|
||||
// encrypting the same message twice doesn't result in the same ciphertext.
|
||||
//
|
||||
// The label parameter may contain arbitrary data that will not be encrypted,
|
||||
// but which gives important context to the message. For example, if a given
|
||||
// public key is used to decrypt two types of messages then distinct label
|
||||
// values could be used to ensure that a ciphertext for one purpose cannot be
|
||||
// used for another by an attacker. If not required it can be empty.
|
||||
//
|
||||
// The message must be no longer than the length of the public modulus less
|
||||
// twice the hash length plus 2.
|
||||
func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
|
||||
if err := checkPub(pub); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
hash.Reset()
|
||||
k := (pub.N.BitLen() + 7) / 8
|
||||
if len(msg) > k-2*hash.Size()-2 {
|
||||
err = ErrMessageTooLong
|
||||
return
|
||||
}
|
||||
|
||||
hash.Write(label)
|
||||
lHash := hash.Sum(nil)
|
||||
hash.Reset()
|
||||
|
||||
em := make([]byte, k)
|
||||
seed := em[1 : 1+hash.Size()]
|
||||
db := em[1+hash.Size():]
|
||||
|
||||
copy(db[0:hash.Size()], lHash)
|
||||
db[len(db)-len(msg)-1] = 1
|
||||
copy(db[len(db)-len(msg):], msg)
|
||||
|
||||
_, err = io.ReadFull(random, seed)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
mgf1XOR(db, hash, seed)
|
||||
mgf1XOR(seed, hash, db)
|
||||
|
||||
m := new(big.Int)
|
||||
m.SetBytes(em)
|
||||
c := encrypt(new(big.Int), pub, m)
|
||||
out = c.Bytes()
|
||||
|
||||
if len(out) < k {
|
||||
// If the output is too small, we need to left-pad with zeros.
|
||||
t := make([]byte, k)
|
||||
copy(t[k-len(out):], out)
|
||||
out = t
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// ErrDecryption represents a failure to decrypt a message.
|
||||
// It is deliberately vague to avoid adaptive attacks.
|
||||
var ErrDecryption = errors.New("crypto/rsa: decryption error")
|
||||
|
||||
// ErrVerification represents a failure to verify a signature.
|
||||
// It is deliberately vague to avoid adaptive attacks.
|
||||
var ErrVerification = errors.New("crypto/rsa: verification error")
|
||||
|
||||
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
||||
// order n. It requires that a be a member of the group (i.e. less than n).
|
||||
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
||||
g := new(big.Int)
|
||||
x := new(big.Int)
|
||||
y := new(big.Int)
|
||||
g.GCD(x, y, a, n)
|
||||
if g.Cmp(bigOne) != 0 {
|
||||
// In this case, a and n aren't coprime and we cannot calculate
|
||||
// the inverse. This happens because the values of n are nearly
|
||||
// prime (being the product of two primes) rather than truly
|
||||
// prime.
|
||||
return
|
||||
}
|
||||
|
||||
if x.Cmp(bigOne) < 0 {
|
||||
// 0 is not the multiplicative inverse of any element so, if x
|
||||
// < 1, then x is negative.
|
||||
x.Add(x, n)
|
||||
}
|
||||
|
||||
return x, true
|
||||
}
|
||||
|
||||
// Precompute performs some calculations that speed up private key operations
|
||||
// in the future.
|
||||
func (priv *PrivateKey) Precompute() {
|
||||
if priv.Precomputed.Dp != nil {
|
||||
return
|
||||
}
|
||||
|
||||
priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
|
||||
priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
|
||||
|
||||
priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
|
||||
priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
|
||||
|
||||
priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
|
||||
|
||||
r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
|
||||
priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
|
||||
for i := 2; i < len(priv.Primes); i++ {
|
||||
prime := priv.Primes[i]
|
||||
values := &priv.Precomputed.CRTValues[i-2]
|
||||
|
||||
values.Exp = new(big.Int).Sub(prime, bigOne)
|
||||
values.Exp.Mod(priv.D, values.Exp)
|
||||
|
||||
values.R = new(big.Int).Set(r)
|
||||
values.Coeff = new(big.Int).ModInverse(r, prime)
|
||||
|
||||
r.Mul(r, prime)
|
||||
}
|
||||
}
|
||||
|
||||
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
|
||||
// random source is given, RSA blinding is used.
|
||||
func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
|
||||
// TODO(agl): can we get away with reusing blinds?
|
||||
if c.Cmp(priv.N) > 0 {
|
||||
err = ErrDecryption
|
||||
return
|
||||
}
|
||||
|
||||
var ir *big.Int
|
||||
if random != nil {
|
||||
// Blinding enabled. Blinding involves multiplying c by r^e.
|
||||
// Then the decryption operation performs (m^e * r^e)^d mod n
|
||||
// which equals mr mod n. The factor of r can then be removed
|
||||
// by multiplying by the multiplicative inverse of r.
|
||||
|
||||
var r *big.Int
|
||||
|
||||
for {
|
||||
r, err = rand.Int(random, priv.N)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
if r.Cmp(bigZero) == 0 {
|
||||
r = bigOne
|
||||
}
|
||||
var ok bool
|
||||
ir, ok = modInverse(r, priv.N)
|
||||
if ok {
|
||||
break
|
||||
}
|
||||
}
|
||||
bigE := big.NewInt(int64(priv.E))
|
||||
rpowe := new(big.Int).Exp(r, bigE, priv.N)
|
||||
cCopy := new(big.Int).Set(c)
|
||||
cCopy.Mul(cCopy, rpowe)
|
||||
cCopy.Mod(cCopy, priv.N)
|
||||
c = cCopy
|
||||
}
|
||||
|
||||
if priv.Precomputed.Dp == nil {
|
||||
m = new(big.Int).Exp(c, priv.D, priv.N)
|
||||
} else {
|
||||
// We have the precalculated values needed for the CRT.
|
||||
m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
|
||||
m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
|
||||
m.Sub(m, m2)
|
||||
if m.Sign() < 0 {
|
||||
m.Add(m, priv.Primes[0])
|
||||
}
|
||||
m.Mul(m, priv.Precomputed.Qinv)
|
||||
m.Mod(m, priv.Primes[0])
|
||||
m.Mul(m, priv.Primes[1])
|
||||
m.Add(m, m2)
|
||||
|
||||
for i, values := range priv.Precomputed.CRTValues {
|
||||
prime := priv.Primes[2+i]
|
||||
m2.Exp(c, values.Exp, prime)
|
||||
m2.Sub(m2, m)
|
||||
m2.Mul(m2, values.Coeff)
|
||||
m2.Mod(m2, prime)
|
||||
if m2.Sign() < 0 {
|
||||
m2.Add(m2, prime)
|
||||
}
|
||||
m2.Mul(m2, values.R)
|
||||
m.Add(m, m2)
|
||||
}
|
||||
}
|
||||
|
||||
if ir != nil {
|
||||
// Unblind.
|
||||
m.Mul(m, ir)
|
||||
m.Mod(m, priv.N)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
|
||||
m, err = decrypt(random, priv, c)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// In order to defend against errors in the CRT computation, m^e is
|
||||
// calculated, which should match the original ciphertext.
|
||||
check := encrypt(new(big.Int), &priv.PublicKey, m)
|
||||
if c.Cmp(check) != 0 {
|
||||
return nil, errors.New("rsa: internal error")
|
||||
}
|
||||
return m, nil
|
||||
}
|
||||
|
||||
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
|
||||
|
||||
// OAEP is parameterised by a hash function that is used as a random oracle.
|
||||
// Encryption and decryption of a given message must use the same hash function
|
||||
// and sha256.New() is a reasonable choice.
|
||||
//
|
||||
// The random parameter, if not nil, is used to blind the private-key operation
|
||||
// and avoid timing side-channel attacks. Blinding is purely internal to this
|
||||
// function – the random data need not match that used when encrypting.
|
||||
//
|
||||
// The label parameter must match the value given when encrypting. See
|
||||
// EncryptOAEP for details.
|
||||
func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
|
||||
if err := checkPub(&priv.PublicKey); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
k := (priv.N.BitLen() + 7) / 8
|
||||
if len(ciphertext) > k ||
|
||||
k < hash.Size()*2+2 {
|
||||
err = ErrDecryption
|
||||
return
|
||||
}
|
||||
|
||||
c := new(big.Int).SetBytes(ciphertext)
|
||||
|
||||
m, err := decrypt(random, priv, c)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
hash.Write(label)
|
||||
lHash := hash.Sum(nil)
|
||||
hash.Reset()
|
||||
|
||||
// Converting the plaintext number to bytes will strip any
|
||||
// leading zeros so we may have to left pad. We do this unconditionally
|
||||
// to avoid leaking timing information. (Although we still probably
|
||||
// leak the number of leading zeros. It's not clear that we can do
|
||||
// anything about this.)
|
||||
em := leftPad(m.Bytes(), k)
|
||||
|
||||
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
|
||||
|
||||
seed := em[1 : hash.Size()+1]
|
||||
db := em[hash.Size()+1:]
|
||||
|
||||
mgf1XOR(seed, hash, db)
|
||||
mgf1XOR(db, hash, seed)
|
||||
|
||||
lHash2 := db[0:hash.Size()]
|
||||
|
||||
// We have to validate the plaintext in constant time in order to avoid
|
||||
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
|
||||
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
|
||||
// v2.0. In J. Kilian, editor, Advances in Cryptology.
|
||||
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
|
||||
|
||||
// The remainder of the plaintext must be zero or more 0x00, followed
|
||||
// by 0x01, followed by the message.
|
||||
// lookingForIndex: 1 iff we are still looking for the 0x01
|
||||
// index: the offset of the first 0x01 byte
|
||||
// invalid: 1 iff we saw a non-zero byte before the 0x01.
|
||||
var lookingForIndex, index, invalid int
|
||||
lookingForIndex = 1
|
||||
rest := db[hash.Size():]
|
||||
|
||||
for i := 0; i < len(rest); i++ {
|
||||
equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
|
||||
equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
|
||||
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
|
||||
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
|
||||
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
|
||||
}
|
||||
|
||||
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
|
||||
err = ErrDecryption
|
||||
return
|
||||
}
|
||||
|
||||
msg = rest[index+1:]
|
||||
return
|
||||
}
|
||||
|
||||
// leftPad returns a new slice of length size. The contents of input are right
|
||||
// aligned in the new slice.
|
||||
func leftPad(input []byte, size int) (out []byte) {
|
||||
n := len(input)
|
||||
if n > size {
|
||||
n = size
|
||||
}
|
||||
out = make([]byte, size)
|
||||
copy(out[len(out)-n:], input)
|
||||
return
|
||||
}
|
637
vendor/golang.org/x/crypto/openpgp/keys.go
generated
vendored
637
vendor/golang.org/x/crypto/openpgp/keys.go
generated
vendored
|
@ -1,637 +0,0 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package openpgp
|
||||
|
||||
import (
|
||||
"crypto/rsa"
|
||||
"io"
|
||||
"time"
|
||||
|
||||
"golang.org/x/crypto/openpgp/armor"
|
||||
"golang.org/x/crypto/openpgp/errors"
|
||||
"golang.org/x/crypto/openpgp/packet"
|
||||
)
|
||||
|
||||
// PublicKeyType is the armor type for a PGP public key.
|
||||
var PublicKeyType = "PGP PUBLIC KEY BLOCK"
|
||||
|
||||
// PrivateKeyType is the armor type for a PGP private key.
|
||||
var PrivateKeyType = "PGP PRIVATE KEY BLOCK"
|
||||
|
||||
// An Entity represents the components of an OpenPGP key: a primary public key
|
||||
// (which must be a signing key), one or more identities claimed by that key,
|
||||
// and zero or more subkeys, which may be encryption keys.
|
||||
type Entity struct {
|
||||
PrimaryKey *packet.PublicKey
|
||||
PrivateKey *packet.PrivateKey
|
||||
Identities map[string]*Identity // indexed by Identity.Name
|
||||
Revocations []*packet.Signature
|
||||
Subkeys []Subkey
|
||||
}
|
||||
|
||||
// An Identity represents an identity claimed by an Entity and zero or more
|
||||
// assertions by other entities about that claim.
|
||||
type Identity struct {
|
||||
Name string // by convention, has the form "Full Name (comment) <email@example.com>"
|
||||
UserId *packet.UserId
|
||||
SelfSignature *packet.Signature
|
||||
Signatures []*packet.Signature
|
||||
}
|
||||
|
||||
// A Subkey is an additional public key in an Entity. Subkeys can be used for
|
||||
// encryption.
|
||||
type Subkey struct {
|
||||
PublicKey *packet.PublicKey
|
||||
PrivateKey *packet.PrivateKey
|
||||
Sig *packet.Signature
|
||||
}
|
||||
|
||||
// A Key identifies a specific public key in an Entity. This is either the
|
||||
// Entity's primary key or a subkey.
|
||||
type Key struct {
|
||||
Entity *Entity
|
||||
PublicKey *packet.PublicKey
|
||||
PrivateKey *packet.PrivateKey
|
||||
SelfSignature *packet.Signature
|
||||
}
|
||||
|
||||
// A KeyRing provides access to public and private keys.
|
||||
type KeyRing interface {
|
||||
// KeysById returns the set of keys that have the given key id.
|
||||
KeysById(id uint64) []Key
|
||||
// KeysByIdAndUsage returns the set of keys with the given id
|
||||
// that also meet the key usage given by requiredUsage.
|
||||
// The requiredUsage is expressed as the bitwise-OR of
|
||||
// packet.KeyFlag* values.
|
||||
KeysByIdUsage(id uint64, requiredUsage byte) []Key
|
||||
// DecryptionKeys returns all private keys that are valid for
|
||||
// decryption.
|
||||
DecryptionKeys() []Key
|
||||
}
|
||||
|
||||
// primaryIdentity returns the Identity marked as primary or the first identity
|
||||
// if none are so marked.
|
||||
func (e *Entity) primaryIdentity() *Identity {
|
||||
var firstIdentity *Identity
|
||||
for _, ident := range e.Identities {
|
||||
if firstIdentity == nil {
|
||||
firstIdentity = ident
|
||||
}
|
||||
if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
|
||||
return ident
|
||||
}
|
||||
}
|
||||
return firstIdentity
|
||||
}
|
||||
|
||||
// encryptionKey returns the best candidate Key for encrypting a message to the
|
||||
// given Entity.
|
||||
func (e *Entity) encryptionKey(now time.Time) (Key, bool) {
|
||||
candidateSubkey := -1
|
||||
|
||||
// Iterate the keys to find the newest key
|
||||
var maxTime time.Time
|
||||
for i, subkey := range e.Subkeys {
|
||||
if subkey.Sig.FlagsValid &&
|
||||
subkey.Sig.FlagEncryptCommunications &&
|
||||
subkey.PublicKey.PubKeyAlgo.CanEncrypt() &&
|
||||
!subkey.Sig.KeyExpired(now) &&
|
||||
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
|
||||
candidateSubkey = i
|
||||
maxTime = subkey.Sig.CreationTime
|
||||
}
|
||||
}
|
||||
|
||||
if candidateSubkey != -1 {
|
||||
subkey := e.Subkeys[candidateSubkey]
|
||||
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true
|
||||
}
|
||||
|
||||
// If we don't have any candidate subkeys for encryption and
|
||||
// the primary key doesn't have any usage metadata then we
|
||||
// assume that the primary key is ok. Or, if the primary key is
|
||||
// marked as ok to encrypt to, then we can obviously use it.
|
||||
i := e.primaryIdentity()
|
||||
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications &&
|
||||
e.PrimaryKey.PubKeyAlgo.CanEncrypt() &&
|
||||
!i.SelfSignature.KeyExpired(now) {
|
||||
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true
|
||||
}
|
||||
|
||||
// This Entity appears to be signing only.
|
||||
return Key{}, false
|
||||
}
|
||||
|
||||
// signingKey return the best candidate Key for signing a message with this
|
||||
// Entity.
|
||||
func (e *Entity) signingKey(now time.Time) (Key, bool) {
|
||||
candidateSubkey := -1
|
||||
|
||||
for i, subkey := range e.Subkeys {
|
||||
if subkey.Sig.FlagsValid &&
|
||||
subkey.Sig.FlagSign &&
|
||||
subkey.PublicKey.PubKeyAlgo.CanSign() &&
|
||||
!subkey.Sig.KeyExpired(now) {
|
||||
candidateSubkey = i
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if candidateSubkey != -1 {
|
||||
subkey := e.Subkeys[candidateSubkey]
|
||||
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true
|
||||
}
|
||||
|
||||
// If we have no candidate subkey then we assume that it's ok to sign
|
||||
// with the primary key.
|
||||
i := e.primaryIdentity()
|
||||
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign &&
|
||||
!i.SelfSignature.KeyExpired(now) {
|
||||
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true
|
||||
}
|
||||
|
||||
return Key{}, false
|
||||
}
|
||||
|
||||
// An EntityList contains one or more Entities.
|
||||
type EntityList []*Entity
|
||||
|
||||
// KeysById returns the set of keys that have the given key id.
|
||||
func (el EntityList) KeysById(id uint64) (keys []Key) {
|
||||
for _, e := range el {
|
||||
if e.PrimaryKey.KeyId == id {
|
||||
var selfSig *packet.Signature
|
||||
for _, ident := range e.Identities {
|
||||
if selfSig == nil {
|
||||
selfSig = ident.SelfSignature
|
||||
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
|
||||
selfSig = ident.SelfSignature
|
||||
break
|
||||
}
|
||||
}
|
||||
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig})
|
||||
}
|
||||
|
||||
for _, subKey := range e.Subkeys {
|
||||
if subKey.PublicKey.KeyId == id {
|
||||
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// KeysByIdAndUsage returns the set of keys with the given id that also meet
|
||||
// the key usage given by requiredUsage. The requiredUsage is expressed as
|
||||
// the bitwise-OR of packet.KeyFlag* values.
|
||||
func (el EntityList) KeysByIdUsage(id uint64, requiredUsage byte) (keys []Key) {
|
||||
for _, key := range el.KeysById(id) {
|
||||
if len(key.Entity.Revocations) > 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
if key.SelfSignature.RevocationReason != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
if key.SelfSignature.FlagsValid && requiredUsage != 0 {
|
||||
var usage byte
|
||||
if key.SelfSignature.FlagCertify {
|
||||
usage |= packet.KeyFlagCertify
|
||||
}
|
||||
if key.SelfSignature.FlagSign {
|
||||
usage |= packet.KeyFlagSign
|
||||
}
|
||||
if key.SelfSignature.FlagEncryptCommunications {
|
||||
usage |= packet.KeyFlagEncryptCommunications
|
||||
}
|
||||
if key.SelfSignature.FlagEncryptStorage {
|
||||
usage |= packet.KeyFlagEncryptStorage
|
||||
}
|
||||
if usage&requiredUsage != requiredUsage {
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
keys = append(keys, key)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// DecryptionKeys returns all private keys that are valid for decryption.
|
||||
func (el EntityList) DecryptionKeys() (keys []Key) {
|
||||
for _, e := range el {
|
||||
for _, subKey := range e.Subkeys {
|
||||
if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
|
||||
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
|
||||
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) {
|
||||
block, err := armor.Decode(r)
|
||||
if err == io.EOF {
|
||||
return nil, errors.InvalidArgumentError("no armored data found")
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if block.Type != PublicKeyType && block.Type != PrivateKeyType {
|
||||
return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type)
|
||||
}
|
||||
|
||||
return ReadKeyRing(block.Body)
|
||||
}
|
||||
|
||||
// ReadKeyRing reads one or more public/private keys. Unsupported keys are
|
||||
// ignored as long as at least a single valid key is found.
|
||||
func ReadKeyRing(r io.Reader) (el EntityList, err error) {
|
||||
packets := packet.NewReader(r)
|
||||
var lastUnsupportedError error
|
||||
|
||||
for {
|
||||
var e *Entity
|
||||
e, err = ReadEntity(packets)
|
||||
if err != nil {
|
||||
// TODO: warn about skipped unsupported/unreadable keys
|
||||
if _, ok := err.(errors.UnsupportedError); ok {
|
||||
lastUnsupportedError = err
|
||||
err = readToNextPublicKey(packets)
|
||||
} else if _, ok := err.(errors.StructuralError); ok {
|
||||
// Skip unreadable, badly-formatted keys
|
||||
lastUnsupportedError = err
|
||||
err = readToNextPublicKey(packets)
|
||||
}
|
||||
if err == io.EOF {
|
||||
err = nil
|
||||
break
|
||||
}
|
||||
if err != nil {
|
||||
el = nil
|
||||
break
|
||||
}
|
||||
} else {
|
||||
el = append(el, e)
|
||||
}
|
||||
}
|
||||
|
||||
if len(el) == 0 && err == nil {
|
||||
err = lastUnsupportedError
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// readToNextPublicKey reads packets until the start of the entity and leaves
|
||||
// the first packet of the new entity in the Reader.
|
||||
func readToNextPublicKey(packets *packet.Reader) (err error) {
|
||||
var p packet.Packet
|
||||
for {
|
||||
p, err = packets.Next()
|
||||
if err == io.EOF {
|
||||
return
|
||||
} else if err != nil {
|
||||
if _, ok := err.(errors.UnsupportedError); ok {
|
||||
err = nil
|
||||
continue
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
|
||||
packets.Unread(p)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ReadEntity reads an entity (public key, identities, subkeys etc) from the
|
||||
// given Reader.
|
||||
func ReadEntity(packets *packet.Reader) (*Entity, error) {
|
||||
e := new(Entity)
|
||||
e.Identities = make(map[string]*Identity)
|
||||
|
||||
p, err := packets.Next()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var ok bool
|
||||
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
|
||||
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
|
||||
packets.Unread(p)
|
||||
return nil, errors.StructuralError("first packet was not a public/private key")
|
||||
} else {
|
||||
e.PrimaryKey = &e.PrivateKey.PublicKey
|
||||
}
|
||||
}
|
||||
|
||||
if !e.PrimaryKey.PubKeyAlgo.CanSign() {
|
||||
return nil, errors.StructuralError("primary key cannot be used for signatures")
|
||||
}
|
||||
|
||||
var current *Identity
|
||||
var revocations []*packet.Signature
|
||||
EachPacket:
|
||||
for {
|
||||
p, err := packets.Next()
|
||||
if err == io.EOF {
|
||||
break
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch pkt := p.(type) {
|
||||
case *packet.UserId:
|
||||
current = new(Identity)
|
||||
current.Name = pkt.Id
|
||||
current.UserId = pkt
|
||||
e.Identities[pkt.Id] = current
|
||||
|
||||
for {
|
||||
p, err = packets.Next()
|
||||
if err == io.EOF {
|
||||
return nil, io.ErrUnexpectedEOF
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
sig, ok := p.(*packet.Signature)
|
||||
if !ok {
|
||||
return nil, errors.StructuralError("user ID packet not followed by self-signature")
|
||||
}
|
||||
|
||||
if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId {
|
||||
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil {
|
||||
return nil, errors.StructuralError("user ID self-signature invalid: " + err.Error())
|
||||
}
|
||||
current.SelfSignature = sig
|
||||
break
|
||||
}
|
||||
current.Signatures = append(current.Signatures, sig)
|
||||
}
|
||||
case *packet.Signature:
|
||||
if pkt.SigType == packet.SigTypeKeyRevocation {
|
||||
revocations = append(revocations, pkt)
|
||||
} else if pkt.SigType == packet.SigTypeDirectSignature {
|
||||
// TODO: RFC4880 5.2.1 permits signatures
|
||||
// directly on keys (eg. to bind additional
|
||||
// revocation keys).
|
||||
} else if current == nil {
|
||||
return nil, errors.StructuralError("signature packet found before user id packet")
|
||||
} else {
|
||||
current.Signatures = append(current.Signatures, pkt)
|
||||
}
|
||||
case *packet.PrivateKey:
|
||||
if pkt.IsSubkey == false {
|
||||
packets.Unread(p)
|
||||
break EachPacket
|
||||
}
|
||||
err = addSubkey(e, packets, &pkt.PublicKey, pkt)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
case *packet.PublicKey:
|
||||
if pkt.IsSubkey == false {
|
||||
packets.Unread(p)
|
||||
break EachPacket
|
||||
}
|
||||
err = addSubkey(e, packets, pkt, nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
default:
|
||||
// we ignore unknown packets
|
||||
}
|
||||
}
|
||||
|
||||
if len(e.Identities) == 0 {
|
||||
return nil, errors.StructuralError("entity without any identities")
|
||||
}
|
||||
|
||||
for _, revocation := range revocations {
|
||||
err = e.PrimaryKey.VerifyRevocationSignature(revocation)
|
||||
if err == nil {
|
||||
e.Revocations = append(e.Revocations, revocation)
|
||||
} else {
|
||||
// TODO: RFC 4880 5.2.3.15 defines revocation keys.
|
||||
return nil, errors.StructuralError("revocation signature signed by alternate key")
|
||||
}
|
||||
}
|
||||
|
||||
return e, nil
|
||||
}
|
||||
|
||||
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
|
||||
var subKey Subkey
|
||||
subKey.PublicKey = pub
|
||||
subKey.PrivateKey = priv
|
||||
p, err := packets.Next()
|
||||
if err == io.EOF {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
if err != nil {
|
||||
return errors.StructuralError("subkey signature invalid: " + err.Error())
|
||||
}
|
||||
var ok bool
|
||||
subKey.Sig, ok = p.(*packet.Signature)
|
||||
if !ok {
|
||||
return errors.StructuralError("subkey packet not followed by signature")
|
||||
}
|
||||
if subKey.Sig.SigType != packet.SigTypeSubkeyBinding && subKey.Sig.SigType != packet.SigTypeSubkeyRevocation {
|
||||
return errors.StructuralError("subkey signature with wrong type")
|
||||
}
|
||||
err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, subKey.Sig)
|
||||
if err != nil {
|
||||
return errors.StructuralError("subkey signature invalid: " + err.Error())
|
||||
}
|
||||
e.Subkeys = append(e.Subkeys, subKey)
|
||||
return nil
|
||||
}
|
||||
|
||||
const defaultRSAKeyBits = 2048
|
||||
|
||||
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
|
||||
// single identity composed of the given full name, comment and email, any of
|
||||
// which may be empty but must not contain any of "()<>\x00".
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
|
||||
currentTime := config.Now()
|
||||
|
||||
bits := defaultRSAKeyBits
|
||||
if config != nil && config.RSABits != 0 {
|
||||
bits = config.RSABits
|
||||
}
|
||||
|
||||
uid := packet.NewUserId(name, comment, email)
|
||||
if uid == nil {
|
||||
return nil, errors.InvalidArgumentError("user id field contained invalid characters")
|
||||
}
|
||||
signingPriv, err := rsa.GenerateKey(config.Random(), bits)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
e := &Entity{
|
||||
PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey),
|
||||
PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv),
|
||||
Identities: make(map[string]*Identity),
|
||||
}
|
||||
isPrimaryId := true
|
||||
e.Identities[uid.Id] = &Identity{
|
||||
Name: uid.Name,
|
||||
UserId: uid,
|
||||
SelfSignature: &packet.Signature{
|
||||
CreationTime: currentTime,
|
||||
SigType: packet.SigTypePositiveCert,
|
||||
PubKeyAlgo: packet.PubKeyAlgoRSA,
|
||||
Hash: config.Hash(),
|
||||
IsPrimaryId: &isPrimaryId,
|
||||
FlagsValid: true,
|
||||
FlagSign: true,
|
||||
FlagCertify: true,
|
||||
IssuerKeyId: &e.PrimaryKey.KeyId,
|
||||
},
|
||||
}
|
||||
|
||||
// If the user passes in a DefaultHash via packet.Config,
|
||||
// set the PreferredHash for the SelfSignature.
|
||||
if config != nil && config.DefaultHash != 0 {
|
||||
e.Identities[uid.Id].SelfSignature.PreferredHash = []uint8{hashToHashId(config.DefaultHash)}
|
||||
}
|
||||
|
||||
e.Subkeys = make([]Subkey, 1)
|
||||
e.Subkeys[0] = Subkey{
|
||||
PublicKey: packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey),
|
||||
PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv),
|
||||
Sig: &packet.Signature{
|
||||
CreationTime: currentTime,
|
||||
SigType: packet.SigTypeSubkeyBinding,
|
||||
PubKeyAlgo: packet.PubKeyAlgoRSA,
|
||||
Hash: config.Hash(),
|
||||
FlagsValid: true,
|
||||
FlagEncryptStorage: true,
|
||||
FlagEncryptCommunications: true,
|
||||
IssuerKeyId: &e.PrimaryKey.KeyId,
|
||||
},
|
||||
}
|
||||
e.Subkeys[0].PublicKey.IsSubkey = true
|
||||
e.Subkeys[0].PrivateKey.IsSubkey = true
|
||||
|
||||
return e, nil
|
||||
}
|
||||
|
||||
// SerializePrivate serializes an Entity, including private key material, to
|
||||
// the given Writer. For now, it must only be used on an Entity returned from
|
||||
// NewEntity.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
|
||||
err = e.PrivateKey.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
for _, ident := range e.Identities {
|
||||
err = ident.UserId.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
err = ident.SelfSignature.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
for _, subkey := range e.Subkeys {
|
||||
err = subkey.PrivateKey.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
err = subkey.Sig.Serialize(w)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Serialize writes the public part of the given Entity to w. (No private
|
||||
// key material will be output).
|
||||
func (e *Entity) Serialize(w io.Writer) error {
|
||||
err := e.PrimaryKey.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, ident := range e.Identities {
|
||||
err = ident.UserId.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
err = ident.SelfSignature.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, sig := range ident.Signatures {
|
||||
err = sig.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
for _, subkey := range e.Subkeys {
|
||||
err = subkey.PublicKey.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
err = subkey.Sig.Serialize(w)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// SignIdentity adds a signature to e, from signer, attesting that identity is
|
||||
// associated with e. The provided identity must already be an element of
|
||||
// e.Identities and the private key of signer must have been decrypted if
|
||||
// necessary.
|
||||
// If config is nil, sensible defaults will be used.
|
||||
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
|
||||
if signer.PrivateKey == nil {
|
||||
return errors.InvalidArgumentError("signing Entity must have a private key")
|
||||
}
|
||||
if signer.PrivateKey.Encrypted {
|
||||
return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
|
||||
}
|
||||
ident, ok := e.Identities[identity]
|
||||
if !ok {
|
||||
return errors.InvalidArgumentError("given identity string not found in Entity")
|
||||
}
|
||||
|
||||
sig := &packet.Signature{
|
||||
SigType: packet.SigTypeGenericCert,
|
||||
PubKeyAlgo: signer.PrivateKey.PubKeyAlgo,
|
||||
Hash: config.Hash(),
|
||||
CreationTime: config.Now(),
|
||||
IssuerKeyId: &signer.PrivateKey.KeyId,
|
||||
}
|
||||
if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
|
||||
return err
|
||||
}
|
||||
ident.Signatures = append(ident.Signatures, sig)
|
||||
return nil
|
||||
}
|
120
vendor/vendor.json
vendored
120
vendor/vendor.json
vendored
|
@ -515,6 +515,84 @@
|
|||
"revision": "b2c7a7da5b2995941048f60146e67702a292e468",
|
||||
"revisionTime": "2016-02-12T04:00:40Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "VJk3rOWfxEV9Ilig5lgzH1qg8Ss=",
|
||||
"path": "github.com/keybase/go-crypto/brainpool",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "rnRjEJs5luF+DIXp2J6LFcQk8Gg=",
|
||||
"path": "github.com/keybase/go-crypto/cast5",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "F5++ZQS5Vt7hd6lxPCKTffvph1A=",
|
||||
"path": "github.com/keybase/go-crypto/curve25519",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "IvrDXwIixB5yPPbo6tq1/1cSn78=",
|
||||
"path": "github.com/keybase/go-crypto/ed25519",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "4+fslB6pCbplNq4viy6CrOkkY6Y=",
|
||||
"path": "github.com/keybase/go-crypto/ed25519/internal/edwards25519",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "fgFlkfkaotUjBVhJik2979oCeJw=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "+spfcEChljh3yeIg4K/xHOQ2pVM=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp/armor",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "nWhmwjBJqPSvkCWqaap2Z9EiS1k=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp/ecdh",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "uxXG9IC/XF8jwwvZUbW65+x8/+M=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp/elgamal",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "EyUf82Yknzc75m8RcA21CNQINw0=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp/errors",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "y16ATKgHL/k6rQZqdXP1sIAJxE0=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp/packet",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "BGDxg1Xtsz0DSPzdQGJLLQqfYc8=",
|
||||
"path": "github.com/keybase/go-crypto/openpgp/s2k",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "rE3pp7b3gfcmBregzpIvN5IdFhY=",
|
||||
"path": "github.com/keybase/go-crypto/rsa",
|
||||
"revision": "00ac4db533f63ef97576cbc7b07939ff7daf7329",
|
||||
"revisionTime": "2017-06-05T14:56:57Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "fh+CcgeUUsnuwSORHYWg0ycbp+4=",
|
||||
"path": "github.com/klauspost/compress/flate",
|
||||
|
@ -1182,12 +1260,6 @@
|
|||
"revision": "2c050d2dae5345c417db301f11fda6fbf5ad0f0a",
|
||||
"revisionTime": "2016-09-14T08:04:27Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "TT1rac6kpQp2vz24m5yDGUNQ/QQ=",
|
||||
"path": "golang.org/x/crypto/cast5",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "dwOedwBJ1EIK9+S3t108Bx054Y8=",
|
||||
"path": "golang.org/x/crypto/curve25519",
|
||||
|
@ -1212,42 +1284,6 @@
|
|||
"revision": "ede567c8e044a5913dad1d1af3696d9da953104c",
|
||||
"revisionTime": "2016-11-04T19:41:44Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "IIhFTrLlmlc6lEFSitqi4aw2lw0=",
|
||||
"path": "golang.org/x/crypto/openpgp",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "olOKkhrdkYQHZ0lf1orrFQPQrv4=",
|
||||
"path": "golang.org/x/crypto/openpgp/armor",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "eo/KtdjieJQXH7Qy+faXFcF70ME=",
|
||||
"path": "golang.org/x/crypto/openpgp/elgamal",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "rlxVSaGgqdAgwblsErxTxIfuGfg=",
|
||||
"path": "golang.org/x/crypto/openpgp/errors",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "LWdaR8Q9yn6eBCcnGl0HvJRDUBE=",
|
||||
"path": "golang.org/x/crypto/openpgp/packet",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "s2qT4UwvzBSkzXuiuMkowif1Olw=",
|
||||
"path": "golang.org/x/crypto/openpgp/s2k",
|
||||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0",
|
||||
"revisionTime": "2017-01-13T19:21:00Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "1MGpGDQqnUoRpv7VEcQrXOBydXE=",
|
||||
"path": "golang.org/x/crypto/pbkdf2",
|
||||
|
|
Loading…
Add table
Reference in a new issue